

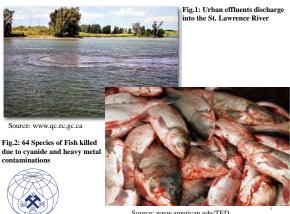
#### **Batch and Kinetic Studies of Ni Adsorption** on Highly Humified Newfoundland Peat

by

#### Emmanuel S. Asapo and Cynthia A. Coles

Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, Canada

6th Sept. 2010




#### CONTENTS

- > Introduction
- > Peat as Metal Adsorbent
- > Peat-Ni Adsorption Kinetics
- > Peat-Ni Adsorption Equilibrium
- > Discussions
- > Conclusions







Peat as Metal Adsorbent

Peat lands occupy ~ 13.4% of the total land area of NL (Daigle and

· Peat possesses unique physico-chemical properties that enables it

· Peat is often classified based on the von Post scale with 1H being

the least decomposed and 10H highly decomposed.

filter, coalesce and remove metals from contaminated water (Pérez

Gautreau-Daigle, 2001).

et al., 2005).

Source: www.american.edu/TED



#### Introduction

- Gradual accumulation of metals (non-biodegradable) is a threat to the environment and human health.
- · Effective removal options are required to support existing treatment methods to reduce/eliminate hazards.
- · Precipitation (carbonate, lime or sulfide) is the widely used treatment for metal contaminated wastewater.
- This is not an effective method when metal concentrations are very low.
- · Adsorption via low cost adsorbents is an effective option.





#### Peat as Metal Adsorbent-contd.

- Poorly humified peat (1H to 5H) has been widely studied as a potential metal adsorbent.
- · Information on the uptake chemistry remain scarce and controversial although ion exchange and complexation are usually reported (Brown et al., 2000).
- The use of highly humified peat (8H to 10H) as metal adsorbent could offer the needed understanding of the uptake chemistry.
- This peat type from NL have high cation exchange capacity and is known to be homogenous in nature (Asapo & Coles, 2010).

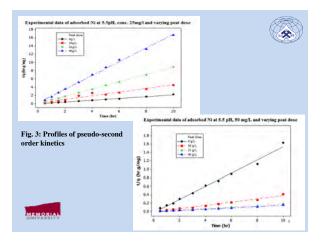




#### MEMORIAL

#### Peat-Ni Adsorption Kinetics

•Peat-Ni adsorption kinetics is better predicted by the pseudo-second order kinetic model.


• The pseudo-second order kinetic is represented by equation1.

$$\frac{t}{q_t} = \frac{1}{K_{1,ad} q_e^2} + \frac{1}{q_e} t \qquad (1)$$

Where,  $q_t = (C_i - C_t)V / M$ 

- Ci is the initial metal conc. (mg/L) and Ct is the metal conc. (mg/L) at a given time, V is the volume of the contaminant (L) and M is the mass of peat used (g).
- K<sub>1.ad</sub> is the pseudo-second order rate constant (g/mg.h)

 $\bullet$   $q_e$  is the quantity of Ni adsorbed at equilibrium (mg/g)





#### Peat Ni-Adsorption Equilibrium

• Langmuir (eq.1) and Freundlich (eq.2) isotherms described the adsorption equilibrium over 24 hrs.

$$\frac{1}{q_e} = \frac{1}{q_m} + \frac{1}{bq_m Ce} \tag{1}$$

Where,  $\boldsymbol{q}_m$  is the monolayer maximum capacity that  $\boldsymbol{q}$  approaches,  $\boldsymbol{b}$  is the ratio of desorption to adsorption .

$$\log q = \log K + \frac{1}{n} \log C_e \qquad (2)$$

Where K (Freundlich constant and 1/n (Freundlich exponent) are measures of adsorption capacity.



MEMORIAN

#### Peat-Ni Adsorption Kinetics - contd.

- Equilibrium was Ni concentration dependent.
- Equilibrium concentration of Ni in solution was higher at lower peat dose.
- Kinetic equilibrium time was 8-10hrs.
- Regression coefficients for Ni uptake was ~ 1.
- Agitation of the reactions vessels influence initial mode of reaction allowing desorption at lower peat dose.



#### Peat Ni-Adsorption Equilibrium

· Summary of the adsorption equilibrium parameters

| 1               | Langmuir Parameters |             |                |      | Freundlich Parameters |                |  |
|-----------------|---------------------|-------------|----------------|------|-----------------------|----------------|--|
| Peat dose (g/L) | b*10 <sup>-3</sup>  | $q_{\rm m}$ | $\mathbb{R}^2$ | 1/n  | Κ                     | $\mathbb{R}^2$ |  |
| 4               | 8.42                | 24.03       | 0.928          | 0.56 | 0.72                  | 0.971          |  |
| 10              | 3.76                | 25.37       | 0.998          | 0.81 | 0.16                  | 0.993          |  |
| 21              | 2.29                | 20.58       | 0.995          | 0.93 | 0.05                  | 0.995          |  |
| 40              | 1.04                | 23.85       | 0.999          | 0.96 | 0.03                  | 0.999          |  |

 At 4g/L peat dose the Freundlich isotherm is a better model compared to Langmuir isotherm.

### MANABIAN

#### Discussion

- At low peat dose, impact of desorption is significant which may be reduced by agitation.
- Adsorption capacity of peat increases as peat dose is increased as more active sites are available.
- Ni adsorption is concentration dependent with the optimum removal obtained at 125mg/L .
- The kinetic of adsorption indicated that Ni uptake involved more than
  one reaction.



#### MORIAL

#### Conclusions

- NL saprist peat is a potential adsorbent for the Ni removal from mining and refining wastewaters.
- Over 90% removal efficiency was obtained.
- If Ni concentration can be maintained at 125 mg/L, higher removal rates will be favoured.
- Ni Desorption rate is reduced as peat dose is increased.
- The chemistry of the uptake involves more than one reaction and can be investigated.

14



# THANK YOU

## **QUESTIONS?**

15