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Extended Abstract
Throughout the state of Colorado, over
1,900 km of surface waters are affected by acid
mine drainage (AMD; IMCC 1992). AMD is
caused by the weathering of pyrite through a
series of biogeochemical processes, which can
also occur through natural weathering
processes. AMD-degraded surface waters and
streambeds cause deleterious effects to stream
ecosystems, in many cases greatly reducing pe-
riphyton, benthic invertebrate, and fish popu-
lations for many kilometers. It is important to
have an understanding of the role of the wet-
lands controlling the cycling of metals because
of the potential major influence on the chem-
istry of receiving waters.

To date, few studies have focused on iron
photochemistry in acid mine drainage im-
pacted wetlands, although several studies have
addressed iron photochemistry in acid mine
drainage streams and lakes (McKnight et al.
1988; McKnight and Bencala 1988; Hrncir and
McKnight 1998; McKnight and Duren 2004;
Gammons et al. 2005; Parker et al. 2008; Nim-
ick et al. 2011). Wetlands are “hot spots” for dis-
solved organic matter (DOM) photochemistry
because the shallow waters are influenced by

high light intensity and high DOM concentra-
tions in slow moving waters with residence
time for reactions to take place. DOM is key in
understanding dominant diel processes on hy-
drogen peroxide, iron speciation, trace metals,
and rare earth metals. The oxidation of Fe²⁺
and cycling of iron has been correlated to the
cycling of DOM (Voelker and Sulzberger 1996;
Hrncir and McKnight 1998). H₂O₂ can be pro-
duced through photolysis of DOM in the pres-
ence of ultraviolet light and O₂ (Voelker and
Sulzberger 1996). The rates of superoxide rad-
ical (O₂⁻), and H₂O₂ formation are functions of
DOM concentration and reactivity and ultravi-
olet light intensity (Craig et al. 2009). While
Fe²⁺ is produced by photoreduction, it is also
consumed in the photo-Fenton reaction: H₂O₂
+ 2Fe²⁺ → 2 Fe³⁺ + OH. + OH⁻ (Voelker and
Sulzberger 1996). If wetlands control the cy-
cling of DOM and metals, photochemistry may
have a major influence on the chemistry of re-
ceiving waters.

A diel study was performed on October,
2011 in a wetland system located downstream
of Pennsylvania Mine in Summit County, Col-
orado to quantify the concentrations and re-
action rates of DOC, H₂O₂, Fe²⁺/Fe³⁺, and other
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metals of interest. Ten hourly samples were
collected during daylight hours and 5 samples
were collected after dark. The pH throughout
the experiment ranged from 3.41 – 3.97. The re-
sults confirmed that photochemistry is a
major control on the oxidation and reduction
of iron in AMD-impacted wetlands. At midday
the H₂O₂ concentrations reached a maximum
and then decreased in the afternoon (Fig. 1).
The dissolved ferrous iron concentrations
were a mirror image of the H₂O₂ concentra-
tions due to consumption in the photo-Fenton

reaction (Fig. 2). The corresponding ferrihy-
drite (FeOH₃) concentrations are a major vari-
able for trace metal transport. The diel fluctu-
ations of dissolved iron concentrations driven
by changing light intensity were associated
with nearly identical trends in the concentra-
tions of 23 different metals, all of which in-
creased as ferrous iron decreased (Fig. 3 shows
an example; all 23 metals show a very similar
trend). In addition to metals commonly found
in AMD streams (Al, Cd, Ni, Mn, Pb, and Zn),
these metals included a number of rare earth

Fig. 1 DOC photolysis pro-
duces hydrogen peroxide.

Fig. 2 Ferrous iron is con-
sumed in the photo-Fenton

reaction.
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metals (Dy, Er, Eu, Gd, Ge, Ho, La, Lu, Nd, Pr, Sc,
Sm, Tb, Tm, U, Y, and Yb) some of which oc-
curred in concentrations exceeding 200 µg/L.
The data collected during the experiment con-
firmed the role of photochemistry in control-
ling the oxidation and reduction of iron, and
the effect iron speciation has on other metal
concentrations in a wetland.
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Fig. 3 Representative diel
metal trends: ferrous iron

and zinc.
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