
9. Calibrate stepwise: physical, chemical, biological 

The process of calibration will also vary depending on the specific model applied, the complexity of the 
system and the amount of data available.  The term 'calibration' itself is not consistently applied, but in 
this context, it is considered to be 

the process of adjusting model rates, coefficients and unknown or unmeasured variables 
such that the numerical model produces a reasonable hindcasted match compared to 
past observations.  

'Validation' is a related step, usually undertaken after calibration, and is defined here as  

comparing model predictions to measurements that are collected after the model 
predictions have been made; or, extending a calibrated model with recent boundary 
condition data, and comparing predictions to field data, without adjusting the 
calibration. 

Similar to the model set up, calibration should proceed stepwise from the physical domain to the 
chemical and then to biological, which reflects the order of key drivers acting upon the system as well 
as an increasing level of complexity. 

When applying any fate process to a mine water model, which will commonly be a loss of some mass 
with time, consider the actual mechanism that is being simulated.  Often in calibrating a model, some 
rate that is observed in an existing facility will be applied to a future facility.  If that is the case, critically 
examine the following: Is the mechanism known to the degree of confidence that justifies applying the 
calibration to future settings?  Are conditions in the observed system the same as those in the future 
system?  Are byproducts or feedback loops being generated that should be accounted for elsewhere in 
the model? 

10. Simulate scenarios 

Model simulation is generally straightforward. The main things to consider are that the simulation 
period, output nodes of interest and output format should all fit the model objectives.  It is a given that 
models are imperfect representations of reality, and the degree of imperfection within a model will vary 
with time and space.  What is important is that the model reflects a level of realism at the time and 
location of interest to the predictions, in a way that achieves the overall model objectives. 

11. Compare output to criteria 

After generating model results, the metrics and criteria derived or set in Step 3 can be applied to the 
results.  Again, it is important to consider the model’s objectives when comparing results to criteria.  For 
a detailed design project, a high level of accuracy may be required, whereas for a regulatory application 
or risk assessment, a lower level of accuracy may be acceptable, provided conservatism is applied to 
uncertain inputs. 

While models may produce vast arrays of results, not all results may be applicable to the selected criteria. 
For example, water quality guidelines are often derived using some averaging period, which can differ 
from an instantaneous result, or a model result that is averaged over a different time step.  In some cases, 
it may be possible to line up the applicable time periods; if not, a description of the difference should be 
noted to those who rely on tables of data that compare model results against criteria. 

Likewise, when comparing a statistical result to criteria, the probability chosen to represent model results 
should align with the derivation of the criteria or the design objectives.  Using probabilistic or Monte 
Carlo simulations, described more under Step 13, is a common approach to assigning a probability to a 
model result. 

If a deterministic simulation is completed using a single statistic to represent inputs (e.g., 95th 
percentiles), the probability of the output from that simulation is not possible to estimate (except to say 
that it will be much less likely).  Therefore, the results should not be labelled with the same statistic (i.e., 
the likelihood of an outcome that assumes multiple, independent events, each with a likelihood of one 
in twenty, will be far lower than one in twenty). 
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12. Iteratively modify: mitigation, models & screening criteria, as appropriate 

It is usual in mine water modelling to require several iterations with refinements to any of the previous 
steps. Often, conservatively high inputs in the first round of modelling will lead to results that exceed 
screening criteria, and the modeller may adjust the inputs to be more accurate and less conservative.  
Similarly, the screening criteria themselves may be too stringent and may need to be discarded in favour 
of site-specific thresholds. 

One of the main reasons to employ mine water models is to identify and select mitigation measures. If 
an initial simulation identifies the need to add mitigation, and that measure is adopted, it will need to be 
incorporated into the model to assess potential efficacy.  The mitigation may take many forms, such as 
a water treatment plant, barrier wall, soil or water cover, water diversion, or changes to the mine plan.  
Accordingly, all parts of the model process, including the conceptual model, are subject to modifications 
and may require iterations.  In some modelling projects of dynamic mine environments, a model scenario 
may be deemed 'frozen', so that the entire team has a fixed basis that can no longer iterate.  This can be 
an essential step in preparing large regulatory approvals where the preparation of a linked set of models 
takes extended time periods.  The modeller needs to be aware that assumed changes in one part of the 
model may lead to discrepancies in a regulatory application with another part of the model that has not 
been frozen. 

Ideally, a mine water model will be constructed with the intention of keeping the model as a living tool 
that will updated throughout the life of mine and into post-closure. Updates can entail frequently 
appending input data that are continually being collected, and occasional updates to the domain as the 
mine plan progresses, as outlined in Step 15. 

13. Conduct an uncertainty and/or sensitivity analysis 

There are many sources of uncertainty to a mine water model. Some can be understood and quantified 
using standard methods, while others cannot.  The former type of uncertainty (known unknowns) is 
discussed in this section, and the latter (unknown unknowns) in the next section. 

Some types of uncertainty can be identified, understood and quantified (at least approximately). For 
example, analytical variability, seasonality, anisotropy and heterogeneity in a given system can be 
quantified or estimated through intensive monitoring. If you are fortunate enough to know the 
approximate range of values for a given variable based on a thorough dataset (i.e., adequate length, 
spatial coverage and frequency of measurement over a range of seasonal and climactic conditions), along 
with the probability of each value, then the uncertainty due to this single variable may be estimated. If 
the uncertainty profile of multiple variables are known, they can be combined in a stochastic simulation. 
If all dominant variables are well characterized, they can be combined in a Monte Carlo simulation to 
quantify known unknowns. 

In order for the resulting output profiles to provide realistic likelihoods associated with each result, the 
variables that co-vary must be identified, and the covarying nature of each input must be aligned. The 
alignment need not be perfect, but any discrepancies will add uncertainty to the results, and that 
uncertainty can be hard to quantify. Correlation plots provide a quick way to establish temporal patterns 
among inputs, such as flow and TSS concentrations, and if these are not already linked mechanistically 
in the model, they can be linked statistically when deriving inputs and generating model input files. 

The results of a Monte Carlo simulation can be evaluated over time or in aggregate – again, whichever 
fits the model objectives. In either approach, there is a likelihood associated with any concentration, 
which provides a basis for estimating and communicating the overall model uncertainty. But the key 
limitation to consider when applying these methods is that they only account for uncertainty that has 
been identified and incorporated into model inputs. 

A more straightforward and less computationally and data-demanding exercise that can be used to 
quantify uncertainty is a sensitivity analysis. This is done by changing one variable, which could be a 
coefficient or time series of input data, keeping all other model inputs fixed, and re-running a scenario. 
The difference in results indicate the effect or ‘sensitivity’ to that single input. This can provide valuable 
information when the modeller cannot obtain specific input data, has uncertainty about aspects of the 
calibration, or cannot defensibly choose one input over another to apply to future conditions. The 
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sensitivity analysis can answer the question of what if some other input turns out to be real? The 
limitation of this approach is that it may oversimplify the problem because few, if any, variables are 
truly independent of all other variables. 

14. Identify and simulate “black swan” events 

To discuss the unknown unknowns, we borrow and adapt two metaphors of the black swan to modelling: 

The first black swan metaphor by Sir Karl Popper deals with falsifiability. Prior to 1697, every swan 
that had ever been observed by Europeans was white, which inductively led to reasoning that “all swans 
are white”. Were a biologist to go searching for more swans to prove this theory, they would indeed find 
that all empirical evidence supported that theory and they might be tempted to accept this as “proof”. 
However, with the discovery of a black swan in Australia in 1697, a single observation falsified that 
theory. In this context, a black swan is a single observation that falsifies a previously held theory.  

The second metaphor by Nassim Nicholas Taleb deals with predictability. In his book The Black Swan 
(Taleb 2007), he describes events that come as a surprise, have a major effect, and are often 
inappropriately rationalized after the fact with the benefit of hindsight. His metaphor is primarily 
concerned with events that have a major impact on civilization. 

Extending these metaphors to a mine water model, a black swan can be thought of simply as a process, 
event, or input to the actual mine water system that, if encountered in the future, will invalidate the 
model results because it was not considered by the model. A black swan event is not reasonably 
foreseeable and its probability cannot be quantified with any accuracy. Therefore, the approach to deal 
with black swans is to attempt to identify possibilities and to have contingencies available where they 
are identified.  The challenge is to distinguish between black swans from implausible or impossible 
scenarios. 

An example of a black swan event in a mine water context is a landslide into a meromictic pit lake with 
submerged mine waste. The likelihood and consequence of lake overturn and release of contaminants 
to surface water and introduction of oxygen to the submerged waste are possible to estimate considering 
a plausible range of limnologic and climactic conditions. But if an earthquake or other geological event 
intervenes, all bets are off. The earthquake is a black swan that would invalidate all model results. In 
this case, the event needs to be evaluated and planned for using means besides the model. If the model 
can be modified appropriately, it may be able to be used to understand the consequence of such an event 
by assuming it happened. 

The modeller need not arrive at contingencies for all such events (though that would be a value added 
service).  The modeller’s challenge, and their responsibility, is to identify and communicate to managers 
or stakeholders the types of events and processes that may render the model results invalid – the black 
swans. 

15. Conduct a post-audit 

While there is some debate over the definition and utility of model validation and verification (Konikow 
and Bredehoeft 1992; Nordstrom 2012), it is in the interest of all to understand whether model 
predictions turn out to be accurate. In the broader context of managing mine waters, regulators need to 
know whether to place confidence in models; stakeholders need to know whether the clean water, 
mitigation, or other resulting prediction came true; mine managers need to be able to adaptively manage 
based on differences in reality versus what was predicted; and the modeller needs to know which 
predictions were accurate and which were not in order to improve their approach with subsequent 
models. 

A post-audit is a series of measurements, collected after the model predictions have been posted, and 
during or after the mine development proceeds, which are compared to the previously made model 
predictions.  A post-audit provides a means of testing the model predictions against reality and verifying 
whether (a) the model was accurate;(b) the assumed mitigation was effective; and (c) that the correct 
decision was made (i.e., that the model objectives were ultimately met). 
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Conclusions 

A checklist of best practices is provided above for developing and applying mine water models.  The 
most important steps are to set clear objectives and to develop a conceptual model, as these steps will 
affect nearly all subsequent steps.  The final steps of identifying uncertainty and comparing predictions 
to post-development observations are the most critical in terms of understanding the limitations and 
performance of the model and for communicating those to stakeholders. 
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