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Abstract
In the process of coal seam mining, the water-resisting strata under coal seam floor 
deform, and then produce floor heave and cracks, which makes the underground water 
stored in aquifers under the coal seam floor pour into the mine, causing water inrush 
accidents. Therefore, the depth of damaged floor is the key data to evaluate the water 
resistance performance of rock strata under coal seam floor. Aimed at the influences of 
various complicated factors for damaged floor during coal mining, the prediction for the 
depth of damaged floor in working area is regarded as a pattern recognition problem with 
nonlinear, multi dimensions and finite samples. A bivariate multivariate non-linear model 
for predicting the depth of damaged floor based on MATLAB was constructed. Six factors 
were selected as indices to evaluate the depth of damaged floor. Based on factor analysis 
theory, three exogenous latent variables of structural equation model were determined by 
dimensionality reduction. On this basis, MLP neural network and Deng’s grey correlation 
were used to calculate weights of main controlling factors, then the combined weights 
of three exogenous latent variables were solved by conflicting evidence fusion. Structure 
optimal bivariant multivariate nonlinear regression modified model. Taking the No. 21 
coal seam mining of Shanxi Formation in Guhanshan coal mine as an example, predict its 
depth of damaged floor, then auxiliarily prove the accuracy of the bivariate multivariate 
nonlinear regression modified model by Flac3D numerical simulation.The results show 
that the bivariate prediction model has higher accuracy rate, providing theoretical basis 
for preventing water inrush from coal seam floor.
Keywords: depth of damaged floor; bi-variable; multivariate nonlinear prediction

Bivariate Multivariate Nonlinear Prediction Model for the 
Depth of Damaged Floor in Working Area Based on MATLAB 

Qu Xingyue1,2, Shi Longqing1,2*, Xu Dongjing1,2, Qin Daoxia3

1Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Minerals, Qingdao 
266590, China; 2College of Earth Sciences & Engineering, Shandong University of Science and Technology, 

Qingdao 266590, China; 3Feicheng Mining Group Shanxian County Energy Co., Ltd., Heze, Shandong 
274300, China.

Introduction 
In China’s coal industry, North China is an 
important coal-producing area in China. It 
has complex geological and hydrogeological 
conditions. Especially in the process of coal 
seam mining, the water-resisting strata under 
coal seam floor deform, and then produce 
floor heave and cracks, which makes the 
underground water stored in aquifers under 
the coal seam floor pour into the mine, 
causing water inrush accidents. Therefore, 
the depth of damaged floor is the key data to 
evaluate the water resistance performance of 
rock strata under coal seam floor. In the past, 
emprical formulas in regulations were usually 

used to calculate the depth of damaged floor, 
however, in these formulas, only mining 
depth, dip angle and facing length were 
considered. In practical situation, there are 
many factors affecting the depth of damaged 
floor. Thus, the author comprehensively 
considered the factors which have direct 
influence on the depth of damaged floor, 
including, mining thickness, dip angle, 
mining depth, facing length and destruction 
resistance of the floor strata, improving the 
traditional empirical formulas and providing 
theoretical and field basis for preventing 
water inrush from coal seam floor (Shi et al. 
2004; Xu et al. 2012).
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Study Area
The Guhanshan coal mine is located in the 
centre of the Jiaozuo coal field, about 25 km 
apart from Jiaozuo city, Shandong province, 
in eastern China. The mine is irregularly 
developed, covering an area of around 17.00 
km2. The mine is found in a monocline dipping 
gently SE, (<25º), with mainly SSE and NNW 
striking faults thatare well developed in this 
area (Fig 1). According to the borehole data, 
the lithology in thestudy area consists of 
Tertiary(R), Quaternary (Q), Permian (P), 
Carboniferous (C), and Ordovician (O) strata 
from top to bottom (Zhang et al. 2017; Gong 
et al. 2012). 

Water-inrush mechanism caused by 
damaged floor
With the advancing of the working face, 
there are four layer-belts existing in rock 
formations below coal seam floor (Fig 2), i. 
e. broken zone caused by mine pressure, the 
new damaged zone, the original damaged 
zone and the original water flowing crevice 
zone. Under the condition of long-term 
tectonic movement, minor faults and joint 
fissures well-developed in damaged zone 
extend continually. The continuity of rock 
formations in broken zone caused by mine 
pressure was completely destroyed, and the 
rock formations lost their water-resisting 
property entirely. Therefore, once the broken 
zone caused by mine pressure connected 
with cracks well-developed in damaged 
zone, floor water will gush along these layer-
belts, causing mine water inrush accidents. 
The pattern of water inrush is shown in Fig 

2. Therefore, accurate prediction for depth 
of damaged floor is of great significance for 
preventing water inrush from coal seam floor.

Factor Analysis
Using SPSS factor analysis modeling, 28 
groups of measured data of the depth of 
damaged floor were analyzed by factor 
analysis, as shown in Fig 3. As can be seen 
from Fig 3, the fault influencing factors (E) 
and the dip angle ( ) have higher load values 
on the first principal component, which are 
described as Factor 1. The facing length (L) 
and the destruction resistance of the floor 
strata (D) have higher load values on the 
second principal component, which are 
described as Factor 2. The mining thickness 
(M) and the mining depth (H) have 
higher load values on the third principal 
component, which are described as Factor 
3 (Wang et al. 2019). In other words, that 
is to determine the three major exogenous 
latent variables of the structural equation 
model, as shown in Fig 4. Based on Matlab 
programming, the correlations between the 
three major exogenous latent variables and 
their internal factors were determined, as 
shown in Fig 5.

Weights of Main Controlling Factors
Determining Weights of Main Controlling 
Factors by MLP Neural Network
The following indicators were used to 
describe the results, as shown in Table 1, the 
standardized weight distribution of main 
controlling factors was obtained as shown in 
Fig 6 (Sun et al. 2001).

Figure 1 Structure outline map of Guhanshan Mine	
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Figure 2 Water-inrush mechanism

Figure 3 Rotated composition diagram  Figure 4 The path diagram of the structural equation model	
   	
  

Figure 5 The cubic diagrams of correlations between the three major factors and their internal factors
	
   	
  	
  

1) Relevant prominence coefficient:  
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2)  Correlation index: 
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3)  Absolute influence coefficient: 
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 Where i is the input unit; j is the output 
unit; k is the hidden unit;wki is the weight 
coefficients between i and k;wjk is the 
weight coefficients between j and k.

Determining Weights of Main 
Controlling Factors by Deng’s Grey 
Relation
Determine the grey association set X of the 
nondimensionalized parent sequence and 
subsequence as follows (Qiu et al. 2016).
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Table 1 Weights of main controlling factors determined by MLP neural network

Main controlling factors E  L D M H

Weights W1 0.571 0.032 0.103 0.022 0.031 0.241
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Then we can define the correlation coefficient 
of the x0 and xi at the point k as follows (Qiu 
et al. 2016).

Where  is the resolution ratio, normally  
 
 = 0.5. According to 
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the weights W2 of each evaluation index we 
determined as shown in Table 2.

Coupling Weights of Main 
Controlling Factors by Conflicting 
Evidence Theory 
Determine the initial weight matrix A of 
main controlling factors as follows (Zhang et 
al. 2018):

The matrix  = (0.381 0.1005 0.1425 0.0905 
0.087 0.1985) was obtained, and then the 
mean matrix B was obtained as follows.

Solve D-value matrix     

according to formula 
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Then the unauthentic vector C and credibility 
vector were gained (Zhang et al. 2018).
C = (0.5 0.5) Cʹ - (0.5 0.5)
Based on this, we can determine the initial 
weight credible matrix Aʹ and weight 
unauthentic matrix A˝. Ultimately, we can 
get the comprehensive weight matrix I and 
optimizational weight matrix I˝ as follows.
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Table 2 Weights of main controlling factors determined by Deng’s grey relation

Main controlling factors E  L D M H

Weights W1 0.191 0.169 0.182 0.159 0.143 0.156

The optimal weights were fused according to 
the formula

            , as shown in Table 3.

Nonlinear prediction model for the 
depth of damaged floor based on 
bi-variables
Based on MATLAB programming, three 
groups of relationships in Fig 5 were fitted, 
and the correlativity surfaces and residual 
analysis diagrams were obtained as shown in 
Fig 7, 8 and 9. The optimum surface equations 
between measured depth of damaged floor 
and bi-variables were determined as follows:
De = a1 + a2E + a3a; De = b1 + b2L + b3D + 
b4L

2 + b5LD

De = c1 + c2M + c3H + c4M
2 c5MH + c6H

2 + 
c7M

3 + c8M
2H + c9MH2

On the basis of considering combined 
weights of principal factors, the established 
bivariant optimal surface equations were 
substituted into the SPSS statistical analysis 
software for bivariant multiple nonlinear 
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  Figure 6 Standardized weight distribution
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Table3 Index weights fused by conflicting evidence theory

Main controlling factors
Optimized Weights Weights fused by conflicting 

evidence  MLPneural network Deng’s grey correlation

E 0.571 0.191
0.527

 0.032 0.169

L 0.103 0.182
0.274

D 0.022 0.159

M 0.031 0.143
0.199

H 0.241 0.156

Figure 7 Fitting of E and 	
  

	
  

	
  

Figure 8 Fitting of L and D               

Figure 9 Fitting of M and H
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regression analysis. The coefficients of each 
variable were recalculated to determine the 
bi-variables multiple nonlinear regression 
modified model for predicting depth of 
damaged floor as follows:

De = 22.83E - 0.004 + 0.057L - 2.05D - 
0.0003L2 + 0.005LD - 2.76M - 0.05H - 0.42M2

 
+ 0.031MH + 0.12M3 - 0.003M2 + 8.37

Based on the above formula, the depth of 
damaged floor of 15031, 15051, 15071 and 
15091 working faces in Guhanshan Coal 
Mine was predicted, as shown in Table 4.

In order to further illustrate the feasibility 
of the bivariate multivariate nonlinear 
regression modified model for predicting 
depth of damaged floor, now, Flac3D three-
dimensionalis program was adopted to 
simulate the depth of damaged floor of 15031 
working face in Guhanshan Mine, as shown 
in Fig. 10. From the figure, it can be seen 
that the numerical simulation results are 
similar to the prediction results of the model 
established in this paper, which auxiliarily 
confirms the accuracy of the bivariate 
multivariate nonlinear regression modified 
model for predicting the depth of damaged 
floor.

Conclusions
(1) Considering six factors affecting depth 

of damaged floor comprehensively, we 
determined weights of main controlling 
factors based on MLP neural network and 
Deng’s grey relation, and then coupled 
these weights by conflicting evidence 
theory, ensuring the effective evaluation of 
the relative importance of each indicator 
for the dynamic model.

(2) Based on the bivariate multivariate non-
linear regression theory, a prediction 
model for the depth of damaged floor 
was established, and applied to the 

Table 4 Prediction of depth of damaged floor in Guhanshan Mine

Working faces E α L D M H Predicted values

15031 0.40 11.3 120 0.3 2.3 435 14.79

15051 0.38 11.3 120 0.3 2.3 455 14.45

15071 0.42 11.3 120 0.3 2.3 475 15.47

15091 0.40 11.3 120 0.3 2.3 495 14.12

prediction of the depth of damaged floor 
in Guhanshan Coal Mine. Compared 
with the outcomes of Flac3D numerical 
simulation, the results show that the 
bivariant multiple regression equation 
have higher prediction accuracy, 
providing theoretical and field basis for 
preventing water inrush from coal seam 
floor.
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Figure 10 The numerical simulation of the depth of damaged floor
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