
MINE WATER. GRANADA. SPAIN. 1985. 

A FINITE ELEMENT APPROXIMATION OF NONLINEAR 
FLOW IN POROUS MEDIA 

J. Elorza Tenreiro 
L. Ferragut Canals 

Departamento de Calculo Numerico e Informatica de la Escuela -
Tecnica Superior de Ingenieros de Minas de Madrid. 
C/ Rios Rosas, 21 28003 Madrid 

ABSTRACT 

For high flow velocities through porous materials Darcy's 
law no longer describes the relationship between the hydraulic 
gradient and velocity, thus more general expressions are requi 
red. In this work we consider an expression of exponential ty~ 
pe to formulate the steady-state nonlinear flow problem. The -
dependence of the media permeability with the hydraulic gra- -
dient suggest the use of the Lagrangien augmented methods.Here 
we present an algorithm based both in these methods and in a -
discretitation of the flow field by finite elements wich take 
into account the possible apparition of a free surface. Fina-
lly, we apply this method to the calculation of an unconfined 
non-Darcy flow near an open ~ine where a syste~ of wells are -
perforated to avoid the flooding of the mine. 

INTRODUCTION 

The finite element method has been extensively applied -
to the solution of linear flow through porous media both in -
the steady-state case by Zienkiewicz, Mayer and Cheung (1966) 
or the evolution case as in Zienkiewicz and Parekh (1970)or -
Pinder and Frind (1972) which combine different types of fini
te elements. In the other hand the first algorithms to the - -
treatement of the free surface were based in an iterative modi 
fication of the finite element mesh as in Neuman and Withers-~ 
poon (1971) or Frang, Wang and Harrison (1972); Later Bathe-
and Koshgoftaar (1979) have proposed a method which do not re
quire mesh iteration. Recently Desai (1984) used a refinement 
of the Bathe's method which take into account the non satura-
ted area. All the preceding works concern to linear flow - - -
through porous medi a.When high velocities take place the Darcy's equation 
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does not describe correctly the relationship between the hy-
draulic gradient and velocity, thus general expressions has -
been proposed as: 

av + 

( 1) 

( 2) 

where i is the hydraulic gradient and v is the velocity of the 
fluid, a and b are constants of the porous media, however both 
c and m depend of the velocity. The value of m ranges from one, 
in the linear case, to two for turbulent flow. In Ahmed and Su 
nada (1969) we can find a theoretical justification to equa- ~ 
tion (2) known as Forchheimer equation. In the other hand - -
PArez Franco (1982) proves that when the hydraulic gradient va 
riations in the flow field are relatively small it is possible 
to consider c and m as constant values. General studies has -
been made using the former expressions and the finite element 
method as in Me Corquodale (1970) which used the equation (2) 
and an over relaxation method to solve the system of equations; 
Volker (1969) used both expressions combined with the method -
proposed by Finn (1967) for the treatement of the free surface. 
In this work we adopt the exponential expression (1) to formu
late the nonlinear flow in porous media problem and an Lagran
gien augmented method which allows to uncoupling the nonlinear 
problem i, each point; reversing the expression (1) we have, 
with i =I~ ul, u denoting the piezometric head: 

V.. k I+ ln-1 .. = n V'U V'U ( 3) 

where 1.1 denote the vector norm in Rd (d=l ,2 or3) and k and -
n its depends of the lvul; in the linear case we have n~l and 
in the turbulent case n=0.5. The steady-state flow equations -
in a isotropic media will be: 

-v(knlvuln-ll vu f in 

in 
0 

in ~ 

l 

where n c Rd is the domain occupied by tne porous media, 

( 4) 

( 5) 

( 6) 

~=~ U ~ is the boundary of n and f, u and g are known func-
tioRs w~ich represent the flow from exPernal sources, the pie
zometric head on ~ and the flow through ~ 1 . 

VARIATIONAL FORMULATION 

The stated problem (4), (5), (6) can be formulated as an 
optimization one in the following way (see Ciarlet (1978)): 

J(u) =Min J(v) (7) 
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1 r + s r r 
J(v) = 5 J Knlvvl dx -J fvdx -J~ gvdx (8) 

n n 1 
where s=n+l, and we search the minimum between the set of func
~ions which takes the value u0 on the boundary ~ 0 . 

Safe for the case s=2 (Darcy's law) the former problem -
is nonlinear because the relationship of the permeability and 
the gradient of the solution. This kind of dependence suggest 
the introduction of a new variable and a new equation ~ = iu 
which allows to uncouple the difficulties besides the gradient 
and in the other hand the nonlinear character of the material. 
The expressions (7) and (8) should be transformed into the fo
lowwing: 

J(u,~) = Min J(v,q) ( 9) 

( 10) 

and now the minimum is search between the couples (v,q) which 
verify the reTations vi~ u0 and q = iv 

0 

FINITE ELEMENT APPROXIMATION 

In practice we solve a discretized version by finite ele 
ments of the minimization problem (9)-(10); considering the do 
main divided into triangular elements and taking continous - ~ 
functions in n which are a polynome of degree k in each trian
gle; in the other hand we take each component in q={q ,q } as 
a polynome of degree k-1 in each element but without a~y Eonti 
nuity relation among elements. -

NUMERICAL ALGORITHM 

One method to solve (9)-(10) is to hand the equation - -
q=iv introducing a Lagrange multiplier ~and to replace J(v,q) 
by the Lagrangien function: 

£(v,q.~)= 
1 r .. s -~- r r r 
-· J k I q I d X - J fv d X - I ~ g v d X + J k D ~ ( iv -q ) d X 
s nn n J 1 n 

( 11) 

where kD is the Darcy's permeability whose introduction here -
we will justify later. It is easy to verify that the required 
solution is a saddle point of the Lagrangien function £, that 
means, (u,~.tl is a solution of: 

£(u,p,~)~ £(u,p,tl~ £(v,q,tl 

for each value (v,q,~) 

( 12) 
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From a numerical point of view the solution of (12) rise 
some dificulties because the bad conditioning of the system -
equations matrix;besi4e that Hestenes (1969) suggested the -
following modification of the Lagrangian function £, with r>O: 

£r{v,q,~l = £(v,q.~)+ 1 J k0 1vv-ql2 dx 

and the solution is now a saddle point of £r. 

The searching algoritm of a saddle point is a modifica-
tion of Uzawa's method and is studied in Fortin and Glowinski 
( 1982): 

We start with arbitrary values for ~a and Io 
+i +i i~l a) Once p and A are known, we calculate u · solving 

£ ( i+l +i +i)-M" r u ,p ,A - tn ( 13) 

+ i + 1 . 
~) We calculate p solv1ng 

£ ( i+l +i+l i) 
r u , p , A ( 14) 

c) We calculate Ai+l by (p>O): 

,i+l = ,i (+ i+l +i+l) 
A A + p 'JU - p ( 15) 

+ i+l +i+l + i+l . 
If lvu -p I>< I vu I make 1 equal to i+l and go to a), 
in another case stop. 

The step (13) is equivale~t to solve the following li- -
near problem for the variable ul+l 

r + i+l+ r ( +i +i + r r 
rJ k0 vu vvdx =J k0 r p -A )vvdx +J fvdx +jt gvd~ 

Q fl fl 1 
( 16) 

The system equation matrix is fixed and consequently only one 
factorization is required. 

The problem (14) is solved in each integration point be
cause the variable q is not continous; in each point we have 
to solve the system of d equations: 

k l+i+ll s-2 +i+l k +i+l 
n P P + r D P rWui+l+Ai Jk

0 
( 17) 

In practice the nonlinear problem can be reduced to only 
one equation, if the value z =lpi+l I is known then the vector 
pi+l can be calculated explicitly from (17);'z is obtained sol
ving by Newton's method: 

( 18) 

470 

IMWA Proceedings 1985 | © International Mine Water Association 2012 | www.IMWA.info

Reproduced from best available copy



where 
+ i+l til w = lr vu + h 

Finally we observe that (15) is an explicit 
en each integration point. 

computation 

The introduction of Darcy's permeability allows the algo 
rithm to solve linear problems in which case we have convergen 
ce for the variable u in only one iteration if we select p=r=T. 
(See Glowinski and Marroco (1975)). 

When the values kn and s change with lvul, we modify the 
step b) in the following way: 

+ i+l bl) Compute vu 
+ i+l (+ i+l) b2) ComputE kn kn(vu ), s=s vu 

ltJ3) Sohe (17) 

TREATMENT OF THE FREE SURFACE 

The method used for handling t~e free surface in uncon-
fined aquifers is similar to that outlined by Bathe and Khos 
goftaar ( 1979) for the 1 i near case (see also Desai ( 1984); --=
they introduce a definition of k as follows: 

\

kDifu>y 
k ( u) = 

0 ifu,;y 

where y is the geometric head of the point; then a modified -
Newton's procedure is adopted. In the nonlinear case we intro
duce the same corrector term in the expression (16) and we ob
tain: 

r r -+; +; + r 
r J kD V6Vvdx = J k(ui) (rp -x )vvdx +J fvdx + 

n rl n 
r r ( i )+ i + 

+I~ gvd Y - r I k u vu vvdx 
1 1. 1 n 

and ui+ 1 = u1 + w6, where w is an acceleration parameter (w~ll. 

COMPUTATION OF THE FLOW THROUGH A SURFACE 

For the computation of the flow that run through a known 
surface we use the nodal reaction concept (see Zienkiewicz - -
(1980); as indicated by Hinton and Owen (1979) the flow going 
across a boundary where we know the piezometric head,can be -
computed by addition of the nodal reactions in the nodes of -
the boundary; denoting by ~I the base function associated to 
the node I of the ~ 0 boundary, we have from (14) 

Jnknliuln-l iui,Idx -J~ 0 
( 20) 
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The integral te,rm on ~ 0 represents the flow running through ~ 0 
associated to node I and his value is 

$I ;J
0

kn1Vuln-lvuvvidx - J0 fvidx -J~ 1 gvid~ (21) 

Usually the terms with f and g will be zero (zero) and 
the value v can be obtained from our algorithme after conver 
gence (i+~lf we have from expression (20) and if we notice -~ 
that k(u);ko under the free surface: 

APPLICATION 

The efficience of the described algorithm has been pro
ved in Ferragut and Elorza (1985) with several applications-
and compared the results with experimental data. Here we pre-
sent an example of an open lengthy shape mine with a system of 
wells parallels to the longest axis to avoid the flooding of -
the mine.First in a middle section the hydrological conditions 
are thus indicated in figure 1 where we have designed with po
inted-line the future position of the wells. The boundary va-
lue problem, taking into account symmetry is showed in f~gure 2 
The computations of the nodal reactions in the well should - -
allow us to know the necessary flow to maintain the free surfa 
ce under the surface of the mine. 

Figure 1. Middle section 
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Figure 2. Boundary conditions 
We have considered nonlinear flow in a karstic rock with 

a Darcy permeability ko=2000 mid and a ratio from turbulent 
permeability and Darcy s one of kT/kD = 0.5;Hernandez Valdes 
(1981) describes a method to compute from the rario kr/k 0 the 
n value in (3) and the ratio kn/kD,so table 1 is obtaineo. 

Table 1 .. n and kn/kD values 

kn kn/kD n JvuJ 

2000. 1. 1. lo-4-lo-2 

1200. 0.6 0.89 1o-2-1o-1 

580. 0.29 0.69 10- 1-10° 

520. 0.26 0.56 10°-101 

580. 0.29 0.52 101-102 

We have done two finite element models; the first one -
with 568 nodes and 1008 triangles, as can be seen in figure 3 
and a second model with 1022 nodes and 1886 triangles (see fi 
gure 4) where we have avoided partly the dry zone and a mesh -=
refinement has been considered. In figures 3 and 4 we present 
as well the position of the free surface obtained with both mo 
dels. In table 2 we give the nodal reactions, for the second
model, corresponding to the nodes on the boundary u=l50; the 
addition equal to ~m3Jd is the necessary flow to maintain 
the free surface in the required position. 

473 

IMWA Proceedings 1985 | © International Mine Water Association 2012 | www.IMWA.info

Reproduced from best available copy



['\. 
["., 
1'\. 
['\. 

1"\ 
1'\ 
~ 
1'\. 
~ 

~ 1'\ 

f< < ~ 
k' ~ 1'\ 

~k-" ...... 1'\. 
'\. 

1"\ 
1'\. 

1'\. '' ['\. ' ' 1'. '" 1'\. ' 1'. 
['\. ' ' ['\. ' ['\. 

1'\ '\I'\ 1'\. '\ I'\ 

' ' ' 1'\ ' ' 1'\ '\I'. 1'\ ' 1'\ 
1'\ '' 1'\ ' 1'\ 
1'\ '" 1'\ ' N 
1'\. ['\. 1'\ ['\. ' l"k 

~ ~ \ ~ \ ~ 
\ ~ \ \ ~ \ 
~ \~ [\ ~ ~ 
~ \\ ~ \ 1\ 
~ ~ 1\ ~ \ \ 
\ ~ ~ ~ \ \ 
~ i\ \ ~ \ \ 
~ J\ ~ \ \ 
~ ~\ ~ \ ~ 
~ ~ \ ~ \ i\ 

' ' 1"- ['\. 

~ '\ C\ l'\ 
'\ '\ '\ 1'\. 

' ' ' ['\. 

'\ '\ '\ 1'\ 
'\ 1'\. ' 1'\ 
"\ '\ ' 1'\. 
'\ ' 1'. 1'. 
~ '\ :\ ['\ 

' ' ' 1'. 
~ 1'\ '\ ['\ 

' 1'\. ' 1'. 

' ["\ '\ l'\ 
'\ 1'\. 1'. 1'. 

' ['\. '\ ~ 
'\ 1'\. '\ 1'. 

' ['\. ' '\ '\ 1'\. '\ 1'. 

' ['\. '\ ['\ -" 1'\ 1'\. '\ 1'\ 

' ' ['\. ' ' '\ 1'\ 1'\. '\ 1'. 

' 1'\ ['\. ' 1'\ 

\ \ ~ \ ~ 
\ \ ~ \ \ 
\ ~ \ \ ~ 
\ \ \ \ ~ 
\ 1\ ~ \ ~ 
~ ~ ~ \ \ 
~ \ ~ \ ~ 
\ \ ~ \ ~ 
\ \ ~ \ ~ 
\ i\ ~ \ ~ 

474 

' 1'. 1'\. 

"' ~ ~ '\ 1'. 1'\. 

' ' ['\. 

1'\. '\ 1'\. 
1'\. ' 1'\ 
'\ '\ l'\ 

' 1'. 1'\. ....., '\ ~ 

' '\ 1'\ 
'\, '\ ["\ 
1'\. ' 1'\ 

"' ~ ["\ ' ' 1'\. 

' ' ['\. 

' ' 1'\. 

' ' ['\. 

1'\. ' 1'\ 

' ' ['\. 

' ' 1'\. 

' ' ['\. 

' '\ 1'\. 

' ' 1'\. 
1'\. '\ 1'\. 

' 
,, 1'\. 

\ \ ~ 
~ \ ~ 
\ \ ~ 
\ \ ~ 
\ \ ~ 
~ \ ~ 
~ \ ~ 
\ \ ~ 
\ \ ~ 
\ \ ~ 

1'. 

"' '\ 

' '\ 
' "' ' :\ '\ 
'\ 
'\ 
'\ 

' ' ' ' ' ' '\ 
' '\ 
' '\ 
' \ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

Q) 

u 

"' 4-
1-

"' Vl 

Q) 

a.• 
1-
4-

"0 
<: 

"' 

.. 

' ~ 
Q) 

"0 
0 

::0:: 

IMWA Proceedings 1985 | © International Mine Water Association 2012 | www.IMWA.info

Reproduced from best available copy



475 

Q) 

u 
<e .... 
5-
::::1 

"' 
Q) 
Q) 

5-.... 
-o 
c: 
co 

N 

Q) 

-o 
0 

::E: 

Q) 

5-
::::1 
Ol 

IMWA Proceedings 1985 | © International Mine Water Association 2012 | www.IMWA.info

Reproduced from best available copy



I 

Table 2. Nodal reactions in u=150.(x 103) 

NODE N. R. NODE N.R. NDDE N.R. NODE N.R. NODE N.R. NODE N .R. I 

1 0. 31 61 1. 20 121 1. 28 181 1. 32 241 1. 04 301 1 . osl 
16 1.10 76 1. 23 136 1. 29 196 1. 33 256 1 . 05 i 316 1. 05 

31 1. 14 91 1. 25 1 51 1. 30 211 1.18 271 1 . 05; 331 1. 05 

46 1. 1 7 106 1. 26 166 1. 31 226.1.04 286 1 . 05, 346 0. 52 
I 
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