ENVIRONMENTAL CATASTROPHES IN THE MINING INDUSTRY IN AUSTRALIA AND THE DEVELOPMENT OF CURRENT MANAGEMENT PRACTICES

Raghu N. Singh
Department of Civil, Mining and Environmental Engineering,
University of Wollongong
NSW 2522, Australia
Phone: + 912 42213070, Fax: + 912 42213238
e-mail: Raghu_Singh@uow.edu.au

ABSTRACT

Australia is one of the leading resources countries in the world characterised by highly productive, immensely competitive and intensively mechanised mining operations. Despite these attributes, the mining industry in Australia has made its fair share of environmental mistakes and has often met with public disapproval of its environmental performance. In this paper, a brief description of a case history is given, where mining of a poly­
metal pyrite ore over a 100 year period contributed $A4.00 billions to the local economy and created the greatest environmental disaster in the history of Australian mining. The paper also describes the evolutionary development of mining legislation controlling the environmental performance of mining operations from exploration to the mine rehabilitation stage using a consultative approach. This is supplemented by a pleasing initiative taken by the mining industry to develop a Code for Environmental Management adopted by some 80% of mining companies in Australia. It is hoped that these latest legislative and voluntary developments in environmental management practice will help mitigate the effects of any major environmental incidents in the future.

INTRODUCTION

Australia is one of the major producers of minerals in the world and is responsible for some $A22 billion worth of total mercantile exports. It ranks first in the world for exporting coal, iron ore, lead, diamonds, zinc concentrates and mineral sands. It is also a prominent exporter of alumina, uranium, aluminium and gold. To the public at large, mining is viewed as an essential industrial activity but incompatible with protection of the surface environment. This is due to the fact that, in many instances, past mining operations did not always consider environmental effects as part of their mining and processing operations. As a consequence, the scars of past mining operations could be seen in many parts of the industry as environmental dereliction. However, environmental issues have assumed unprecedented prominence in Australia over the past several years and occupied a central position in the political, social and economic arena (Whitehouse, 1992, and Anon, 1994). Research in Australia and overseas has established that the mining and smelting of sulphide minerals, disposal of tailings and the management of waste water in mining operations are some of the major environmental issues (Woods, 1991; Taylor, 1998 and Harries, 1998). Various incidents indicate that erosion of tailings dumps and disposal of waste water in rivers have impaired the river
water quality several kilometres downstream from mining operations (Norris, 1986 and Craze, 1971). Therefore, mine waste water quality monitoring and treatment is becoming an increasingly important issue to local communities (Anon 1994). It is reported that “Australia has many thousands of historic abandoned mine sites of which a significant fraction are sources of pollution from oxidation of sulfidic materials” (Harries, 1998).

In this paper some environmental disasters which have occurred in the mining industry in Australia are outlined together with the current regulatory regimes to control re-occurrence of such environmental incidents. An Environment Management Code adopted by the Australian mining industry to improve its environmental performance is also described. The Code does not set the environmental standards but expects the individual mining companies to commit themselves to continual improvement by putting environmental management systems in place to achieve full compliance.

ENVIRONMENTAL DISASTERS IN AUSTRALIA

Australia has had a fair share of environmental mishaps in the history of its mining industry, and some of the well known environmental incidents are presented in Table 1. From the analysis of this table it can be concluded that major environmental problems in the past can be attributed to:

- Mining and processing of sulphide ores.
- Acid mine drainage discharged into river systems.
- Erosion, lack of treatment and rehabilitation of tailings dams or spoil heaps.

It can also be seen that most environmental problems are not just the legacy of the past but that some of them had not been rectified even in 1998. For example, run-of-coal wash from the escarpment area near Kemira Colliery during the floods of August 1998 in Wollongong which partially buried some residential buildings.

One of the greatest sources of embarrassment to the Australian mining industry is the environmental impact at the Mt Lyell mine in Western Tasmania resulting from continuous mining and processing operations from 1893 to 1994. During this period 100 million tonnes of sulphide ore, 1 million tonnes of copper, 35 tonnes of gold and 700 tonnes of silver were produced which contributed some $440 million to the Australian economy. During the earlier part of the operations, 11 different smelters used a pyritic smelting process utilising the heat generated by the combustion of pyrites for smelting with local timber used as a fuel. It is estimated that that during the year 1900 some 1000 woodcutters were employed to cut wood in the surrounding rain forest to fire the furnaces and to provide timber support in the mines (Blainey, 1954). At this stage 200,000 tonnes/year of sulphur dioxide were being discharged into the atmosphere. The combination of sulphur, forest fire and torrential rain scoured the hills (Montgomery and Del Grande, 1998).

In 1922, the earlier smelting process at Mt Lyell was discontinued and the ore was processed using froth flotation to produce a 26% copper concentrate, feeding to the local smelters. The tailings from the processing plant were directly discharged into the Queen river which flowed forty kilometres through Queenstown into the King River and down to the sea at Macquarie harbour. In addition, the mine discharged highly acidic mine water as a result of underground caving operations underneath an extensive opencut, thus oxidising the sulphide ore and producing sulphuric acid. An unconsolidated waste rock pile containing approximately 50 million tonnes of sulphide waste also contributed to the acid mine drainage. As a consequence of past ignorance and environmental neglect the following environmental degradation resulted:

- The Queen river has been silted with sludge from mining up to a few metres in depth. It is estimated that 90 million tonnes of untreated tailings were discharged into the Queen river between 1922 and 1994 and this practice of tailings disposal into the river is still continuing. The Queen river is considered to be environmentally dead.
- Acid drainage from the mine and the unconsolidated waste dump is 100 Litre/second. Acidic effluent from the mining lease area carries in excess of 2.5 tonnes of copper per day to the downstream catchment (Environment Australia, 1997).
- The mountains surrounding Queenstown are devoid of vegetation, trees and soil.
- Where the King river joins the harbour an unfertile delta has formed which is unlikely to disappear without any major environmental clean up.
- The copper load of the mine effluent is estimated as 2.5 tonnes/day (Miedecke, 1996). A carpet of thick copper-containing sludge has formed in the harbour area.
- The river pollution is exacerbated by the construction of a dam by Tasmania’s Hydro Electric Corporation above the mine reducing the flow of water into the King river by 80% thereby impairing its self-flushing capability.
- Marine devastation can be traced back to mining because of contaminant transport in an area of some of the highest rainfall in Australia.

Renison closed its mining operations in December 1994 without making any attempts to remedy the environmental devastation (Montgomery and Del Grande, 1998). Its successor, Bohhannen’s Copper Mine plant are attempting to extract 20 million tonnes of deeper ore in an environmentally sustainable manner. Since 1995, the Commonwealth jointly funded with the state government and CMT a project to rectify the environmental damage caused by Mt Lyell. This project is being supervised by the Supervising Scientist of the Commonwealth Government.
ENVIRONMENTAL CATASTROPHES IN THE MINING INDUSTRY IN AUSTRALIA AND THE DEVELOPMENT OF CURRENT MANAGEMENT PRACTICES

Table 1 Historical examples of environmental impact of mining and minerals operations.

<table>
<thead>
<tr>
<th>Mine</th>
<th>Period</th>
<th>Source of Pollution</th>
<th>Impact</th>
<th>Remedial Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT LYELL MINE</td>
<td>1896-1969</td>
<td>• Tailings discharged in to river</td>
<td>• River is dead, banks 1 m deep in silt and sludge</td>
<td></td>
</tr>
<tr>
<td>(Cu, Zn, Au and Ag, mining and smelting)</td>
<td></td>
<td>• Smelting of copper ore and high rain fall</td>
<td>• No surface soil and no vegetation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Using wood from local forests as fuel in smelters</td>
<td>• Metallic sludge in river bed and harbour with no marine life.</td>
<td></td>
</tr>
<tr>
<td>RUM JUNGLE (uranium and copper mine)</td>
<td>1954-1971</td>
<td>• Five open cuts</td>
<td>• Depletion of aquatic flora and fauna</td>
<td>$18.6 millions public money to rehabilitate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Three overburden heaps</td>
<td>• Wind and rain denudation of tailings</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Tailings discharged into Finnis River</td>
<td>• Public health hazards</td>
<td></td>
</tr>
<tr>
<td>CAPTAINS FLAT (Pb, Cu, Zn and Au Pyrites)</td>
<td>1874-1962</td>
<td>• Underground mine (acid mine drainage)</td>
<td>• Erosion of dumps</td>
<td>$3 M for rehabilitate tailings dumps and diversion of surface water from U/G mine.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 2.5 Mt mine waste dumps</td>
<td>• 600 mm river siltation</td>
<td></td>
</tr>
<tr>
<td>HARTLEY VALLEY AND CLARENCE COAL MINES IN KATOOMBA</td>
<td>1981-1998</td>
<td>• Water discharge from Katoomba seam to Hawkesbury River system. (Water treatment under EPA licence)</td>
<td>• pH Mine water - 3.7 to 7.2</td>
<td>Treatment of water before discharge to meet EPA licence conditions.</td>
</tr>
<tr>
<td></td>
<td>1980 - to date</td>
<td>• A/G mine waste discharge</td>
<td>• Elevated level of Zn in River</td>
<td></td>
</tr>
<tr>
<td>GOLD MINING IN VICTORIA</td>
<td>1850* Dredging</td>
<td>• Crushing and grinding, Amalgamation process (Hg in tailings)</td>
<td>• Depression of fauna</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Open pit U/G mines</td>
<td>• Cyanide process</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Tailings and water discharge into river</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PORT PIRIE (Lead smelting)</td>
<td>1876-1976</td>
<td>• Air pollution high stack from smelter</td>
<td>• 200,000 t unaccounted lead sediments, in soils and vegetables</td>
<td></td>
</tr>
<tr>
<td>KEMIRA COAL MINE (MOUNT KEIRA)</td>
<td>1848-1991</td>
<td>• Coal spoil heaps on escarpment area</td>
<td>• Lead poisoning of children</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Run off tailings in storm and burying the residential buildings in Wollongong in 1998</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOUNT ISA MINES (Pb, Zn and Cu mining and smelting)</td>
<td>1934-to present</td>
<td>• Dispersion of smelter smoke through tall stacks</td>
<td>• Acid rain problems in widely dispersed area</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Decrease of vegetation on hills</td>
<td>• Degradation of vegetation on hills</td>
<td></td>
</tr>
</tbody>
</table>

CURRENT ENVIRONMENTAL MANAGEMENT PRACTICE IN NEW SOUTH WALES

Environmental approach to mine planning

By its very nature, mining operations disturb the surrounding natural land, air and aquatic environments. Therefore, it is necessary to conduct mining operations with environmental safeguards in place and to rehabilitate the land surface after completion of the mining operations in order to meet the expectations of the community, government, and the industry. Mining and exploration in the Australian State of New South Wales, are authorised under any of the following three principal legal authorisation procedures:

1. A Mining or Coal Lease issued by the Department of Mineral Resources and operated in compliance with the lease conditions.
2. By virtue of the private ownership of the mineral and in accordance with the conditions of the development consent. This is implemented by the State Environmental Protection Authority.
3. Under a title granted under the Crown Lands Act by the Department of Conservation and Land Management. Thus, in recent years there has been a shift in the public expectation requiring that the regulatory authorities should pay emphasis to anticipating and preventing environmental impact due to mining rather than using the earlier reactive approach (Whitehouse, 1992). The Department of Mineral Resources is responsible for promoting mining development, management and utilisation of minerals resources in New South Wales. It places emphasis on environmental factors in the planning, operational and rehabilitation phases of mining. This objective is achieved by using a combination of environmental management plans, appropriate conditions on titles, and financial guarantees of performance in accordance with Section 70 (2) (a) of the Mining Act 1992, developed in consultation and co-operation with the industry (Epps, 1991).
Lease conditions and financial guarantees

Most mining in New South Wales is authorised by a title issued under the Mining Act 1992. The principal sections of the Act enabling the imposition of conditions are: Section 70 (1) (a) - under which a mining operation cannot be suspended without written consent of the Minister, Section 237 which protects natural resources, Section 238 which includes conditions for protecting the environment and Section 239 which deals with the rehabilitation of areas damaged by mining. The last condition is particularly important as it permits the Department of Mineral Resources, through the Minister, to vary the environmental or rehabilitation conditions in a mining title. This power of amendment illustrates that the importance placed on satisfactory environmental performance is the only way that the lease conditions may be unilaterally varied during the term of the lease and applies to environmental matters only.

Until passing of the Mining Act 1992, the only available sanction for breaches of the lease conditions was the cancellation of the tenement. While this threat is still pertinent, implementation of such threat in reality is highly unlikely. However, the Mines Act 1992, Section 5, made it an offence to carry out mining in contradiction to the conditions of the mining lease specified in the Mining Rehabilitation and Environmental Management Plan (MREMP) issued by the Department of Mineral Resources.

Mining rehabilitation and environmental management

The Mining Rehabilitation and Environmental Management Plan is an essential official vehicle for introducing environmental considerations into mine planning (Brook et al, 1994). It limits the adverse effects of mining, reduces environmental cost and provides an agreed procedure for rehabilitation of the mine after mining operations have ceased. In order to encourage responsible mine environmental management, the title holders are required as a condition of their title to submit to the Department of Minerals Resources a detailed MREMP for approval. This plan is reviewed annually throughout the life span of the mine. All concerned authorities are represented at a single on-site meeting to discuss the plan with the mine operator's representatives. The plan is then approved as it was submitted or in a modified form. Compliance with the approved plan is then mandatory, although there is a provision for amendment during the year if circumstances change. The annual reporting procedure is the key element to MREMP. Thus, the Environmental Rehabilitation and Environmental Management Plan provides flexibility to both mine operators and government in response to changing circumstances and increasing knowledge of the local environment. In order to assist the mine operator in the preparation of an MREMP, an extensive set of guidelines are available in the Department of Mineral Resources incorporating both short term mining operational objectives and long term rehabilitation goals for the mine. The scope of the MREMP documentation can be varied to suit the scale of operations. The Department of Mineral Resources is responsible for overseeing the plan, for co-ordinating the input of various government authorities and ensuring that the mine operations and rehabilitation programs are being carried out in accord with the lease conditions and the MREMP. The advantages of the Mine Rehabilitation and Environmental Management Plan are as follows:

- The plan incorporates all government actions and mine compliance in a single document, thus avoiding conflicting government requirements and developing a single reporting system.
- The agreed MREMP permits rapid evaluation of controls and eliminates unnecessary duplication of efforts by various government authorities and the mine operator.
- For the Department of Mineral Resources, the MREMP ensures that environmental planning is an integral part of mine planning and not introduced piecemeal as a matter of minor importance.
- An annual review and a single combined site inspection meeting eliminates a great deal of interference and duplication by government departments.
- An integrated mine planning and environmental management approach has resulted in cost reductions for many mining operations. Thus, the MREMP concept is a valuable instrument for assisting both government and industry in the management of the environmental impact of mining from large gold mines to small intermittently operating quarrying operations.
- Under Section 240 of the Mining Act 1992, the Minister may order the mining lease holder to carry out rehabilitation work and if the lease holder does not comply the Minister may order a contractor to carry out remedial work (Section 241). The cost of rehabilitation can be recovered from the lease holder under Section 242 of the Act.

AUSTRALIAN MINERALS INDUSTRY CODE FOR ENVIRONMENTAL MANAGEMENT

Motivated with the need to be accountable to the public at large and in order to take a proactive role in mining environmental matters, the Australian Mineral Industry Council has developed a Code for Environmental Management. The main elements of this Code are:

- **Sustainable development** incorporating economic, environmental and social considerations into environmental management.
- **Environmentally responsible culture generate** by demonstrating management commitment, implementing management systems and providing time and resources to educate and train employees and contractors in environmental matters.
CONCLUSIONS

The Australian mining industry does not enjoy the confidence of the public at large due to its past legacy of environmental management. In recent years much work has been carried out in environmental research, incorporating mine rehabilitation and environmental management as a condition for the granting of a mining lease and mine operators must now give a financial guarantee against environmental lapses. In addition, a voluntary Code for Environmental Management has been adopted by the mining industry to lift industry's environmental performance. These initiatives are considered to be a good start but it may take a long time to convince the public as whole of this. Thus, in the author opinion time is not right ripe for self-regulation.

ACKNOWLEDGMENTS

Thanks are due to Dr J. Shonhardt for his valuable help in preparation of the final manuscript of this paper.

BIBLIOGRAPHY

Tiller, D., 1990. Mercury in freshwater environment- The contamination of water bodies in Victoria as a result of past mining activities. Report SRS 90/005, Environmental Studies Branch, Environmental Protection Authority of Victoria, Melbourne.