
 
Abstracts of the International Mine Water Conference 19th – 23rd October 2009 
Proceedings ISBN Number: 978-0-9802623-5-3 Pretoria, South Africa 
Produced by: Document Transformation Technologies cc  Conference organised by: Cilla Taylor Conferences 
 

POTENTIAL IMPACT OF MINING ACTIVITY ON XIN’AN KARST 
SYSTEM, SHANXI, CHINA 

C.S. Wang  
The School of Resource and Earth Science, China University of Mining and Technology, Xuzhou,  

China 221008; E-mail: cougar3wcs@163.com 

ABSTRACT 

Xin’an Karst system, located in the southeast of Shanxi Province, China, is noted for its availability of Ordovician karst 
water resources. The karst water is the main water resources for local domestic, industrial, agricultural and mining 
water use. Since 1980s, local Xin’an Basin Management Agence dedicated to the integral management of Xin’an Karst 
System. The new round National Water Resources Assessment in 2005 showed that the Xin’an Karst System can reach 
water balance and pose great potential water use. The continuous drawdowns of karst system are mainly dominated by 
dry period of weather. The south Qinshui Coalfield belongs to the North China Permo-Carboniferous Coalfield and is 
mined by Lu’an Mining Group. Lu’an Mining Group is one of the main water users of Xin’an Karst system. This article 
assessed the status of the Karst system, observed the water use patterns of mining, and investigated the trend of karst 
water regime by hydrochemical and isotopic method. The result shows that the karst hydrogeologic cycle is obviously 
accelerated and karst is developed downwardly in mining area by intensive mining water use. Actually, the potential use 
of karst water is limited. 
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1. INTRODUCTION 

In China, the groundwater sustainable use in mining area is greatly challenged by intensive water use or dewatering. 
Usually, the results of intensive groundwater development haven’t completely loomed out and the overall pumpage can 
easily be confused as recharge. That is an important reason why the groundwater condition of some Noth-China coal 
mining areas is continuously worsening. 

Early in 1940, Theis (1940) definitely showed that the water that can be used is initially derived from removal of water 
in storage, but over time is increasingly derived from decreased discharge and/or increased recharge. Bredehoeft (1997, 
2002) re-stressed that sustainable ground water development has nothing to do with its virgin recharge; that the size of a 
sustainable water development depends on the dynamic response of the aquifer system to the water development; and 
that the groundwater system must reach its new steady state and consume no more storage. M. Sophocleous (1997, 
2000) put forwards using transition curve (a curve of aquifer system from groundwater storage depletion to induced 
recharge) to assess the steady state of groundwater system. Frans (2005) stated that the aquifer system can reach many 
steady states, but there is only one optimal steady state for specified development horizon.  

Xin’an Karst system, located in the southeast of Shanxi Province, China, is noted for its availability of Ordovician karst 
water resources. The karst water is the main water resources for local domestic, industrial, agricultural and mining 
water use. Since 1980s, local Xin’an Basin Management Agence dedicated to the integral management of Xin’an Karst 
System. The new round National Water Resources Assessment in 2005 showed that the Xin’an Karst System is still 
within its water balance and pose great potential water use.  

But the persistent decline of drawdown and spring indicated that the system is consuming storage and reach far form its 
new equilibrium. The safe yield of the karst system was over-estimated. 
This article assessed the status of the Karst system, observed the contribution of intensive mining water use by Lu’an 
Mining Group to overall basin water use patterns, investigated the trend of karst water regime by hydrochemical and 
isotopic method, assess the equilibrium state of karst system, and discuss the reasonability of the safe yield assessment. 

2. XIN’AN KARST GROUNDWATER BASIN  

Xin’an Karst Spring is one of most important karst groundwater system in the semi-arid North China Platform. The 
Xin’an Karst Spring System is surrounded by surrounding mountains: the Taihang Mountain to the east, the Taiyue 
Mountain to the west (Fig. 1).  
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Fig. 1. Location Map of Xin’an Karst groundwater Basin 

In geology, the Xin’an Karst system occurs in early Cenozoic Changzhi Basin. The geologic formations of the 
Changzhi Basin are Cambrian and Ordovician carbonate rocks, Permo-Carboniferous sandy and clay clastic 
sedimentary rocks, and Quaternary unconsolidated sediments upwardly. The dominated geologic structures of the 
Changzhi Basin are as shown in Fig. 2.  

 
Fig. 2. Structural Map of Changzhi Basin (Xin’an Spring) 

In hydrogeology, the aquifers of the basin mainly include: middle Cambrian~ middle Ordovician carbonate karst 
aquifers, upper Carboniferous clastic rock and interlayer limestone fissure aquifers, Permian clastic fissure aquifers, and 
Quaternary unconsolidated aquifers.  

The upper Carboniferous clastic rock and interlayer limestone fissure aquifers and the Permian clastic fissure aquifers 
are somewhat isolated and relatively separated from the overlying pore water and underlying karst water system. The 
upmost unconsolidated aquifers are recharged mainly by precipitation, and discharge into rivers.  
The dominated groundwater water system of the basin is Ordovician carbonate karst system, also called “Xin’an Karst 
Spring System”. Boundaries of the Xin’an Karst Basin are: topographic ridges to the west, aquifuge boundaries of 
igneous and metamorphic rocks to the south-east, groundwater ridges to the north and south. The Ordovician karst 
aquifers are recharged by precipitation in the east Ordovician outcrop of Chanzhi Basin, conflux in the middle of the 
basin, and discharge as series of springs near Xin’an village. The runoff and discharge of the karst water are strictly 
controlled by the regional geologic structures and erosion basis. The Xin’an Spring area is hydrogeologically divided 
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into western stagnant zone, eastern runoff zone, middle concentrated runoff zone, and spring discharge zone. The 
coalfield of Lu’an Mining Group (with output of 30 million tons per year) just locates in the middle concentrated runoff 
zone.  

The National Water Resources Assessment (NWRA) in 2005 showed: (1) by adding the statistic withdrawral of karst 
water to the natural spring flow rate, that the average natural karst water resource is 10.25 m3/s; (2) by method of spring 
flow attenuation, that the safe yield of spring system is 8.96 m3/s; (3) by checking and tradeoff the recharge, that the 
safe yield is reliable; and (4) owing to less current karst water withdrawral (2.68 m3/s), Xin’an Karst water System 
poses great potential for water development. 

However, this article thinks that the NWRA overestimated the karst water resources. After 1980s, due to intensive karst 
water development, the karst spring flow rate and water level ceaselessly declined, aquifer storage accounted for large 
part of pumped karst water, and the karst system was far from its steady state. Therefore, the time series of spring flow 
can’t directly be used to estimate the safe yield and the overestimated recharge can’t be used to testify the safe yield. 

3. STATUS OF THE KARST WATER SYSTEM 

Karst Spring Flow Rate and its Decline 

Based on the time series of spring flow rate from 1956 to 2006, the curve of spring flow is shown in Fig 3. It is showed 
that: (1) The average spring flow rate is 9.64m3/s, the maximum 16.03m3/s in 1964, and minimum 4.72m3/s in 1999; (2) 
Before 1980s, the spring flow was stable, average spring flow 11.44 m3/s; the spring flow indicates an annual and a 
about 10-years periodic cycle; (3)after 1980s, the spring flow drastically decline, magnitude of spring flow decline 6.46 
m3/s, average spring flow 6.86 m3/s.  

Xin’an Karst Spring is a typical complete drainage spring. By adding the total water use to the spring flow rate, the 
karst water resource is shown in Fig 3. It is showed that: (1) even after restoring the karst water withdrawral, the karst 
water resource obviously reduced 3.09 m3/s from 11.45 m3/s to 8.36 m3/s; (2) the karst wate withdrawral can’t tradeoff 
the decline of spring flow; (3) karst water use contributes more to the decline of spring flow. (4) The karst water system 
is under the development far from its balance, that the current water balance did not indicate stable status of the system. 

  
Fig. 3. Curves of Xin’an spring karst flow and restored karst water resource 

Precipitation and its Trends 

The time series of precipitation (Fig 4) shows that: (1) the precipitation is stable and periodically changed since 1954 to 
2006, average precipitation 572.83mm, maximum 853.83mm in 1971 and 932.1mm in 2003; (2) the precipitation shows 
a downward trend since 1980s, average precipitation before 1980 is 587.8mm and average precipitation after 1980 is 
557.2mm; the average precipitation after 1980s is less than the overall average value;(3) The precipitation shows an 
almost 20~30 years dry/wet hydrologic periods; After 1980, the Xin’an karst area goes into hydrologic dry years.  
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Fig.4. Precipitation of Xin’an Spring Basin 

Karst Groundwater Level and its Dynamics 

The Xin’an karst water development started from 1980s. From then on, the karst water level dropped down 
continuously.  

In runoff zones, the water levels continuously declined from +670~680m in 1980s to +640~650m in 2000s, magnitude 
of drawdown is about 30m. In discharge zones, the water level also linearly dropped about 10m. The curves of karst 
water level in runoff and discharge areas are shown in Fig 5 and Fig 6. 
The rate of groundwater level decline is 0.2~0.51 m/a in discharge zone, 0.66～0.99 m/a in south Changzhi runoff zone 
and 0.50~1.84m/a in north Xiangyuan runoff zone.  
 

 
 

Fig 5. Curve of Karst Water Level in Runoff Zone 
 

 
 

Fig 6. Curve of Karst Water Level in Discharge Zone 

The coal mines of Lu’an Group take up most areas of north Xiangyuan runoff zone. The karst water level has declined 
from the original +670～690m in 1980s to +630～650m. The average rate of drawdown is over 1.2 m/a, maximum of 
2.81m/a. According to the Guideline of Assessing Groundwater Over Exploitation Area (SL286—2003,China), the area 
where drawdown rate exceeds 1m/a belongs to groundwater over exploitation area. So, the mining area is locally 
exploited.  
As a result, the gradient of the karst water decreased and water pressure in discharge area declined. At present, the 
spring flow decreased and many original springs have disappeared. The Karst system is far from its final balance.  
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Karst Water Development and Mining Water Use 

The Fig 7 illustrates the inflation of karst water withdrawal since 1980s. Now, the spring karst water is developed by 
spring diversion project, spring power lift project and deep well pumping. The spring diversion project directly diverts 
at Xin’an Spring 0.12 m3/s (in 2003) spring water to Linxian, Henan Province. The two spring power lift projects pump 
total 1.19 m3/s karst water at Xin’an Spring respectively to Changzhi Water Supply Company and Shanxi Concrete 
Plant. Now, totally there are 129 deep wells distributing in south and north runoff zones. They pumps total 1.37 m3/s 
karst water for industry and domestic purpose. The most concentrated karst pumping centers are composed of Houpu, 
Changcun Coal Mine, Shikejie Coal Mine, etc. In the deep well pupmpage, the karst water use by coal mines takes up 
0.6~1.0 m3/s. So the deep well pumping would shed more than spring diversion project and spring power lift project 
influence on the whole spring karst system and coal mining water use play an important role in the evolution of karst 
aquifer system.  

 
Fig.7. withdrawal of karst water since 1980s from Xin’an karst basin 

Dynamics of the Karst System  

By stochastic time series analysis and statistical analysis, the relationship between spring flow rate and precipitation is 
that (1) at first, the longer the span of average precipitation is, the bigger the correlation coefficient between to spring 
flow rate and average precipitation is; (2) the spring flow rate has closest relationship with 11-year average precipitation 
(Fig 8), the correlation coefficient is 0.67, and after 1980s the spring flow rate curve obviously deviates the 11-year 
average precipitation curve; (3) then, the correlation coefficient is getting small; the spring flow rate has negative 
relationship with 20 year average precipitation. 

 
Fig.8. Relationship between Spring flow Rate and 11 year average precipitation 

Because Xin’an karst aquifer is a complete drainage spring, finally recharged by precipitation and discharged by spring 
and water withdrawral, the spring flow rate model is set up as equation (1): 

∑
=

− ⋅+⋅+=
M

i
witit QcPbaQ

1
0                             (1) 

where 
tQ  is the spring karst flow rate at t  year, unit of m3/s; 

0a  is a constant, varies with M ; 

ib  is the lag coefficient of precipitation, varies with M ; 

itP−  is the precipitation with lag time of i years; 
M  is the maximum lag time, adopting 11 years; 
c  is a coefficient,  

wQ  is the total amount of exploited karst water; 
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The curves of monitored and fitted spring flow rate are shown is Fig9. The result of fitting justified that the assumption 
of 11 years of lagging is reasonable and the dynamics of spring flow is controlled by precipitation and water 
withdrawral. . 

 
Fig.9. Relationship Between Spring flow Rate and 11-year average precipitation 

The correlation between karst water resource and average precipitation is that (1) as prolonging the span of the average 
precipitation, the correlation coefficient between spring water resource and average precipitation increases; (2) the karst 
water resource has maximum correlation coefficient with 21-year average precipitation (Fig 10 ), the correlation 
coefficient is 0.85; (3) the karst spring system can store and adjust 21 year precipitation. 

 
Fig.10. Relationship Between Karst Water Resource and 21-year average precipitation 

As the 21-year average precipitation increasing, the karst water resource exponentially grows as equation (2).  
xbeayy ⋅⋅+= 00                                    (2) 

The fitted curve of karst spring water resource versus precipitation is shown as Fig 11. From Fig 11 it is concluded that 
(1) as the 21-year precipitation is known, the curve can be used to estimate karst water resource; (2) average 
precipitation after 1980s is 557.2mm, the karst water resource is 8.4m3/s, maximum 9.6 m3/s, minimum 7.2 m3/s; (3) the 
water resource (10.25 m3/s) and safe yield (8.96 m3/s) by NWRA are overestimated.  
The reducing spring flow rate, unceasing water level drawdown, persistent dry years, and inflating water development 
indicates that the current pumping is consuming certain amount of storage and that the dynamics and new steady state 
of the karst aquifer is still under way. 

 
 

Fig.11. Fitted Curves of Karst Water Resource and  
21-year average precipitation 
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4. EVOLUTIONARY TRENDS OF KARST WATER REGIME  

Hydrochemical Evolution  

The karst water regime in all hydrogeologic zones is definitely different. In western stagnant zone, total dissolved solids 
(TDS) is 518~872mg/l, type of water quality belongs to SO4-Ca·Mg and SO4·HCO3-Ca·Mg, and the concentrate of SO4 
is up to 90mg/l. In the south Changzhi runoff zone, total dissolved solids is 373~482mg/l, type of water quality belongs 
to HCO3·SO4-Ca·Mg, and the concentrate of SO4 is 50~70mg/l. In north Xiangyuan runoff zone, total dissolved solids is 
usually less than 400mg/l, type of water quality belongs to HCO3 -Ca·Mg and HCO3·SO4-Ca·Mg, and the concentrate of 
SO4 is 20~70mg/l. In the discharge zone, total dissolved solids is also less than 400mg/l, type of water quality belongs 
to HCO3 -Ca·Mg and HCO3·SO4-Ca·Mg. 

Under the intensive karst water development, the hydrochemical evolution of the karst water regime behave as : owing 
to the karst water pumping by Wangzhuang Mine, Zhangcun Mine, Changcun Mine, Wuyang Mine, and Tunliu Mine, 
the TDS and concentration of SO4 in west stagnant zone decreased, the water level dropped and the stagnant zone 
further moved west. 

Isotropic Feature 

By isotropic method, it is concluded that (1) the values of the used stable and radioactive isotrope are: d18O (‰) -9.0 ~ 
-13.34, d18D (‰) is 66.7~79.79, and T(TU) is 2~24, and the d34S (‰) is 11.9~22.8;(2) the average age of karst water 
is 80 years, .(2) the storage of the karst system is 3.15×1010 m3,which is the amount of water that can adjusted in 21 
years;(3) the dissolution rate the 2.28 mm/ka. (4) The system is evolving quickly and the stable state haven’t achieved.  

5. CONCLUSION 

(1) the Xin’an spring flow rate is correlated with 11-year average precipitation; the Xin’an karst water resource is 
correlated with 21-year average precipitation; the karst aquifer can store and adjust 21 year precipitation;. the 
Xin’an karst water resource is exponentially grow with the increase of 21-year precipitation, 

(2) The reducing spring flow rate, unceasing water level drawdown, persistent dry years, and inflating water 
development indicates that the current pumping is consuming certain amount of storage and that the dynamics and 
new steady state of the karst aquifer is still under way. 

(3)  the hydrochemical and isotropic method testified the karst systm was a quick and cessless evolutionary processs; 
(4) the water resource of Xin’an Karst spring was over-estimated by NWRA. In dry year, the infiltration is more 

complicated, the recharge coefficient is far less than that in wet years. Certain amount of storage pumped be simply 
viewed as water resource.  
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