

1-Introduction 2-Materials and methods 3-Results and discussion 4- Future works

2- Materials and Methods / Biofilter mixtures

Cellulosic wastes, organic materials, compost, structural agent, inoculum, neutralizing agent, nutriments (more

#1 : sawdust (20%), wood chips (10%), chicken manure (10%), compost (20%), sand (20%), river sediments (15%), calcium

8	2- Mat	erials and N	lethods / AM	D synthetic production	1				
	Concentrations		mg/L	Two AMD were inve	estigated :				
Al		1	-AMD : Fe = 4000 ppm						
	(Cd	0,5	-AMD light : Fe = 10	000 ppm				
		Cr	1						
	Fe (in	AMD)	4000						
	Fe (in AMD light) Mg		1000	AMD (Genty, 2008)					
			10	SA SAL					
	Ν	Мn	10						
	1	Ni	2						
	Pb		0,5						
SO4 ²⁻		9000		1					
	2	Zn	0,5						
	I	рH	3	2000 S 1					
1-Intro	oduction	2-Materials	and methods	3-Results and discussion	4- Future works				

2- Materials and Methods / Batch tests 10 Mixture characterization in batch conditions . sampling port Nitroger AMD + mixture 600ml / 200 g 1 L erlenmeyer Mesurements : pH, redox potential, metal concentrations, sulfates during 40 days 1-Introduction 2-Materials and methods 3-Results and discussion 4- Future works

1-Introduction 2-Materials and methods 3-Results and discussion 4- Future works

Mixtures summury:

sources

information in the proceedings)

carbonate (2%), urea (3%) (Neculita, 2007). #1, #2, #3, #5 : comparison between 4 organic material

#6 = #1 without inoculum from sediment

#4, #7 = 50% #1 + 50% sand or calcite sand

SRB present in compost, sediments, organic materials

#8 = #1 not boost by urea

2- Materials and Methods / Column tests

- Three mixtures were selected from batch tests
- 12 L columns
- HRT : 5 and 7 days, upflow
- AMD and AMD light
- The saturated hydraulic conductivity was measured during the experiment to evaluate clogging

1-Introduction 2-Materials and methods 3-Results and discussion 4- Future works

Outline 12

- 1- Introduction
- 2- Materials and methods
- 3- Results and discussion

1-Introduction 2-Materials and methods 3-Results and discussion 4- Future works

4- Future works

© by Authors and IMWA

- Al, Cd, Cr, Ni, Zn removal was up to 90%, Pb removal was between 52-80% and Mn removal varied between 1 and 28%. Sulfates removal was 5-20 %. No significant difference between each operational condition.
- Role of biofilter mixture :
- No signifiant change in terms of iron removal
- No signifiant change in terms of saturated hydraulic conductivity. Values stayed quite stable around 10⁻³ cm/s for #1 and #4, and 5.10⁻³ cm/s for #7.
 SRB biofilter with upflow seemed not clogged (contrary to downflow columns of Neculita, 2007)
- Role of HRT

17

- No signifiant change for iron treatment efficiency for 5 or 7 days
- Role of AMD iron concentration
 - 80% when 1000 ppm, 10-20% when 4000 ppm

 1-Introduction
 2-Materials and methods
 3-Results and discussion
 4- Future works

18 Outline

- 1- Introduction
- 2- Materials and methods
- 3- Results and discussion
- 4- Future works

1-Introduction 2-Materials and methods 3-Results and discussion 4- Future works

Biofilter mixture	Biofilter mixtures								
Dry weight %	#1	# 2	#3	#4	# 5	#6	#7	# 8	
Maple chips	10	10	10	5	10	10	6	10	
Maple sawdust	20	20	20	10	20	20	11	20	
Chicken manure	10			5		10	8	10	
Catle manure		10							
Sheep manure			10						
Compost	20	20	20	10	20	20	12	20	
sand	20	20	20	10	20	35	50	20	
Sediment	15	15	15	8	15		8	15	
Urea	3	3	3	2	3	3	3		
Calcium carbonate	2	2	2		2	2	2		
Calcite sand				50				5	
Municipal sludges					10				

Slide 24

MSOffice1 Qu'est-ce que tu veux dire? "weekly" , 2010-09-01