

- pH increase season 2 for all filters except fly ash F
- Net alkalinity
 - Lime kiln dust and LD-slag both seasons
 - Fly ash F both seasons, but low alkalinity (0.1 meq/L)
 - In season 2, also green liquor dreg and fly ash E
- Net acidity
 - Lime mud/fly ash F

pH, Eh (mV)						
	ARD from reactors (pH 2.8-3.3, Eh 200-80 mV)					
		$\overline{}$	<u></u>		\bigcirc	
	1.	2. Lime mud/fly	3.	4. Lime	5. Green liquor	6.
F	ly ash F	ash	Fly ash E	kiln dust	dreg	LD-slag
	\downarrow	\downarrow		\downarrow	\downarrow	\downarrow
2008	5.7	3.6	3.4	5.8	3.7	4.9
2009	5.0	3.8	5.0	10.7	5.5	9.7
2008	147	168	211	-45	147	3
2009	-41	32	-24	-147	5	-132

			ution
Fe	Fe	Al	Al
2008	2009	2008	2009
88	80	85	80
31	14	12	13
21	30	13	19
24	71	0	64
29	18	0	12
6	79	0	73
	Fe 2008 88 31 21 24 29	Fe Fe 2008 2009 88 80 31 14 21 30 24 71 29 18	2008 2009 2008 88 80 85 31 14 12 21 30 13 24 71 0 29 18 0

Iron and aluminum, % removed from solution Conc. from reactors: Fe 90 mg/L, AI 25 mg/L)					
	Fe	Fe	Al	Αl	
	2008	2009	2008	2009	
• F1, fly ash F	88	80	85	80	
• F2, lime mud/fly ash F	31	14	12	13	
• F3, fly ash E	21	30	13	19	
• F4, lime kiln dust	24	71	0	64	
• F5, green liquor dreg	29	18	0	12	
• F6, LD-slag	6	79	0	73	

Iron and aluminum, % removed from solution Conc. from reactors: Fe 90 mg/L, Al 25 mg/L)						
	Fe	Fe	Al	Al		
	2008	2009	2008	2009		
• F1, fly ash F	88	80	85	80		
• F2, lime mud/fly ash F	31	14	12	13		
• F3, fly ash E	21	30	13	19		
• F4, lime kiln dust	24	71	0	64		
• F5, green liquor dreg	29	18	0	12		
• F6, LD-slag	6	79	0	73		

Iron and aluminum, % removed from solution Conc. from reactors: Fe 90 mg/L, AI 25 mg/L)						
	Fe	Fe	Al	Al		
	2008	2009	2008	2009		
• F1, fly ash F	88	80	85	80		
• F2, lime mud/fly ash F	31	14	12	13		
• F3, fly ash E	21	30	13	19		
• F4, lime kiln dust	24	71	0	64		
• F5, green liquor dreg	29	18	0	12		
• F6, LD-slag	6	79	0	73		

Discussion

- 2008
 - F1: Iron and aluminum prec.
 - F2, F3, F5: Iron and aluminum low degree of prec. (low pH)
 - F4, F6: Iron and aluminum low degree of prec., pH too low for iron(II)hydrolysis
- 2009
 - F1: Iron and aluminum prec.
 - F2, F3, F5: Still low degree of Fe and Al prec.
 - F4, F6: Iron and aluminum prec., pH high enough for Fe(II)hydrolysis (pH>8). Blue-green precipitates (probably FeCO₃ (green rust))

Discussion

- Filters 2, 3 and 5 low acid neutralizing effect
- Iron and aluminum precipitates seem to passivate neutralizing surfaces (especially for carbonate materials)
- Horse manure added to filters 2 and 3 in summer 2010
 - pH increased to above 5.5

Conclusions

- Carbonated fly ash and mixture fresh fly ash/lime mud act as carbonate materials
- Hydroxide materials were superior to carbonate materials in the present experimental setup
- As the filters are designed today, only hydroxide materials work sufficiently, some modifications are though suggested

Conclusions, cont.

- Filters with carbonate materials
 - Addition of reducing material, analogous to an ALD
- Aeration of ARD prior to filter
- Filters with hydroxide materials
 - Mixing of material with e.g. wood chips for better flow
 - Precipitation of aluminum cannot be avoided, iron(II) can however maintain in solution up to ph

Thanks for Your Attention!

lotta.sartz@oru.se