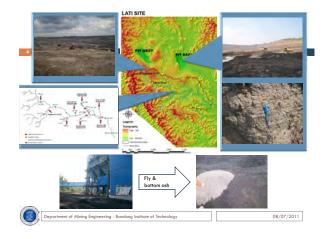


Introduction



Introduction

3

- Lati coal mine (PT Berau Coal) located in East Kalimantan, Indonesia - is suffering from AMD problem since most of the overburden as well as interburden material is classified as potentially acid forming.
- The deficit on non-acid forming material leads to the attempt to investigate the alternatives in AMD mitigation, one of which is the use of coal combustion (fly and bottom) ash from the nearby coal fired power plant.
- Due to the Indonesian regulation, coal combustion ash is classified as a hazardous waste. It is, however, encouraged to re-use the ash rather than conserve and dump the ash as a waste.
- The aim is to study the various blending schemes of overburden and coal combustion ash in preventing the AMD generation

Materials & Methods

ent of Mining Engineering - Bandung Institute of Technology

Samples:

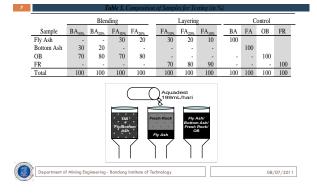
- Overburden samples were taken both from the mine pit (FR) and the waste dump (OB).
- Fly ash (FA) and bottom ash (BA) were collected from the ash disposal in the power plant.
- Mineral composition was identified using XRD analysis and the major chemical composition analyzed by XRF
- Static test was conducted to characterize the samples; geochemical rock type was defined by using acid-base accounting calculation and NAG test result

5

Department of Mining Engineering - Bandung Institute of Technology 08/07/2011

Materials & Methods

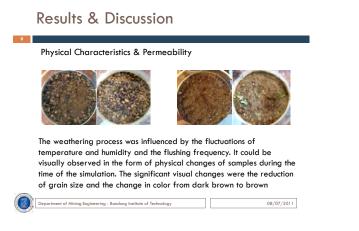
Methods


6

- Free draining column leach test, daily flushing with deionized water
- During flushing, infiltration rate was measured
- Daily measurement of leachate:
- pH, EC, TDS
 Metal content analyzed form biweekly cummulative leachates
- Department of Mining Engineering Bandung Institute of Tech

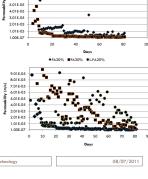
08/07/2011

Mixing/Blending scheme

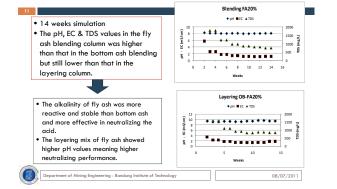


Major chemical composition and static test result

	SiO ₂	CaO	Fe ₂ O ₂	Na ₂ O	ijor Cher AL ₂ O ₃	MgO		TiO ₂		P₂O4	SO ₂	Ľ
Fly Ash	19.68	15.00	12.77	10.95	8.72	3.02	0.93	0.50	0.10	0.09	22.64	5
Bottom Ash	16.11	17.56	26.47	4.53	7.09	2.99	0.78	0.67	0.16	0.07	10.42	12
OB	55.88	0.88	7.07	0.73	15.71	1.46	1.68	0.64	0.10	0.05	0.23	15
Fresh Rock	58.92	0.43	5.02	1.28	16.11	0.94	1.60	0.62	0.07	0.11	0.34	14


pH4.5 pH7 Fly Ash (FA) Bottom Ash (B 86 84.90 515 0.8 5 90 Kg H₂SO₄/ton ; ANC = Acid Neutralizing Capacity; NAPP = Nett Acid Producir

Department of Mining Engineering - Bandung Institute of Technology 08/07/2011


Since the permeability in control .01E-05 .01E-05 .01E-05 columns that consisted of 100% fly ash and bottom ash did not 01E-0 5.01E-0 show any significant change ightarrow4.01E-05 the decrease in the permeability might be resulted from the weathering of rock materials. Larger decreasing infiltration rate occurred in the fly ash blending columns compared to that in the bottom ash blending columns It could be important in improving the performance of capping in the encapsulation of PAF material.

Department of Mining Engineering - Bandung Institute of Tea

◆BA20% ■FA20%

Metal Content

pH, Electrical Conductivity (EC), Total Dissolved Solids (TDS)

 Higher A higher the AN neutra 	er me 1D th	etal at w	conte /as al	ent ir Iread	, the y ge	e lay enera	ering ated i	sch n th	eme ne ro	e mig ck sa	sht k amp	oe c ole p	ause	ed b	у
)	M	In (mg/L	L	SO.	2 ² (mg/	L)	c	u (mg/L)		Zn (mg/l	L)
		e (mg/L													
	Max	Min	Avrg	Max	Min	Avrg	Max	Min	Avrg	Max	Min	Avrg	Max	Min	
ва	Max 4.89	Min 0.22	Avrg 1.52	25.04	2.30	8.98	2,629	135	1,532	Max 0.14	0.03	0.07	Max 2.21	0.02	0.90
FA	Max 4.89 459.40	Min 0.22 0.04	Avrg 1.52 139.91	25.04 139.70	2.30 0.11	8.98 33.83	2,629 16,475	135 112	1,532 5,146	Max 0.14 0.53	0.03	0.07	Max 2.21 2.65	0.02	0.90
FA	Max 4.89 459.40 54.40	Min 0.22 0.04 4.12	Avrg 1.52 139.91 32.60	25.04 139.70 81.50	2.30 0.11 1.77	8.98 33.83 29.01	2,629 16,475 5,003	135 112 245	1,532 5,146 2,274	Max 0.14 0.53 13.43	0.03 0.00 0.91	0.07 0.26 6.52	Max 2.21 2.65 7.26	0.02 0.01 0.49	0.90 1.10 2.92
FA FR OB	Max 4.89 459.40 54.40 5.69	Min 0.22 0.04 4.12 0.44	Avrg 1.52 139.91 32.60 2.61	25.04 139.70 81.50 22.05	2.30 0.11 1.77 0.69	8.98 33.83 29.01 8.13	2,629 16,475 5,003 1,279	135 112 245 208	1,532 5,146 2,274 679	Max 0.14 0.53 13.43 4.48	0.03 0.00 0.91 0.38	0.07 0.26 6.52 1.60	Max 2.21 2.65 7.26 2.90	0.02 0.01 0.49 0.38	0.90 1.10 2.92 1.52
FA	Max 4.89 459.40 54.40 5.69 1.03	Min 0.22 0.04 4.12	Avrg 1.52 139.91 32.60	25.04 139.70 81.50	2.30 0.11 1.77	8.98 33.83 29.01 8.13 10.26	2,629 16,475 5,003 1,279 7,491	135 112 245 208 285	1,532 5,146 2,274 679 2,322	Max 0.14 0.53 13.43 4.48 0.38	0.03 0.00 0.91	0.07 0.26 6.52	Max 2.21 2.65 7.26 2.90 2.13	0.02 0.01 0.49	0.90 1.10 2.92 1.52 0.45
FA FR OB Blend-BA30%	Max 4.89 459.40 54.40 5.69 1.03 0.99	Min 0.22 0.04 4.12 0.44 0.04	Avrg 1.52 139.91 32.60 2.61 0.49	25.04 139.70 81.50 22.05 27.23 30.72	2.30 0.11 1.77 0.69 1.76	8.98 33.83 29.01 8.13 10.26 15.66	2,629 16,475 5,003 1,279 7,491 12,295	135 112 245 208 285 132	1,532 5,146 2,274 679 2,322 3,213	Max 0.14 0.53 13.43 4.48 0.38 0.08	0.03 0.00 0.91 0.38 0.00	0.07 0.26 6.52 1.60 0.08	Max 2.21 2.65 7.26 2.90	0.02 0.01 0.49 0.38 0.05	Avrg 0.90 1.10 2.92 1.52 0.45 0.10 0.04
FA FR OB Blend-BA30% Blend-BA20%	Max 4.89 459.40 54.40 5.69 1.03	Min 0.22 0.04 4.12 0.44 0.04 0.12	Avrg 1.52 139.91 32.60 2.61 0.49 0.56	25.04 139.70 81.50 22.05 27.23	2.30 0.11 1.77 0.69 1.76 0.60	8.98 33.83 29.01 8.13 10.26	2,629 16,475 5,003 1,279 7,491	135 112 245 208 285	1,532 5,146 2,274 679 2,322	Max 0.14 0.53 13.43 4.48 0.38	0.03 0.00 0.91 0.38 0.00 0.00	0.07 0.26 6.52 1.60 0.08 0.02	Max 2.21 2.65 7.26 2.90 2.13 0.30	0.02 0.01 0.49 0.38 0.05 0.02	0.90 1.10 2.92 1.52 0.45 0.10
FA FR OB Blend-BA30% Blend-BA20% Blend-FA30%	Max 4.89 459.40 54.40 5.69 1.03 0.99 0.78	Min 0.22 0.04 4.12 0.44 0.04 0.12 0.39	Avrg 1.52 139.91 32.60 2.61 0.49 0.56 0.57	25.04 139.70 81.50 22.05 27.23 30.72 0.60	2.30 0.11 1.77 0.69 1.76 0.60 0.01	8.98 33.83 29.01 8.13 10.26 15.66 0.30	2,629 16,475 5,003 1,279 7,491 12,295 33,575	135 112 245 208 285 132 41	1,532 5,146 2,274 679 2,322 3,213 6,412	Max 0.14 0.53 13.43 4.48 0.38 0.08 0.13	0.03 0.00 0.91 0.38 0.00 0.00 0.01	0.07 0.26 6.52 1.60 0.08 0.02 0.04	Max 2.21 2.65 7.26 2.90 2.13 0.30 0.08	0.02 0.01 0.49 0.38 0.05 0.02 0.02	0.90 1.10 2.92 1.52 0.45 0.10 0.04
FA FR OB Blend-BA30% Blend-BA20% Blend-FA30% Blend-FA20%	Max 4.89 459.40 54.40 5.69 1.03 0.99 0.78 0.56	Min 0.22 0.04 4.12 0.44 0.04 0.12 0.39 0.02	Avrg 1.52 139.91 32.60 2.61 0.49 0.56 0.57 0.29	25.04 139.70 81.50 22.05 27.23 30.72 0.60 11.65	2.30 0.11 1.77 0.69 1.76 0.60 0.01 1.02	8.98 33.83 29.01 8.13 10.26 15.66 0.30 6.34	2,629 16,475 5,003 1,279 7,491 12,295 33,575 21,610	135 112 245 208 285 132 41 130	1,532 5,146 2,274 679 2,322 3,213 6,412 5,068	Max 0.14 0.53 13.43 4.48 0.38 0.08 0.13 0.07	0.03 0.00 0.91 0.38 0.00 0.00 0.01 0.01	0.07 0.26 6.52 1.60 0.08 0.02 0.04 0.02	Max 2.21 2.65 7.26 2.90 2.13 0.30 0.08 0.05	0.02 0.01 0.49 0.38 0.05 0.02 0.02 0.02	0.90 1.10 2.92 1.52 0.45 0.10 0.04 0.03

Conclusion

13

15

- Bench scale simulations using rock and coal combustion samples with different mixing schemes have been conducted to study the weathering process of rock samples
- The change of permeability relative to time occured due to the rock particle size reduction. In the blending columns the permeability decreased more significantly compared to that in the layering columns. The fly ash blending, due to a smaller grain size, gave lower permeability than the bottom ash.
- The effectiveness of rock sample weathering in controlling the neutralization of AMD was measured in the quality of leachates in term of pH, electrical conductivity, total dissolved solids and chemical composition.

Department of Mining Engineering - Bandung Institute of Technology	08/07/2011	

Conclusion

 Overall, it could be concluded that overburden blending with coal combustion ashes, particularly fly ash, has the potential to prevent AMD generation in the disposal area, especially for Lati Coal Mine
 Follow up studies are necessary to make it applicable in the mining operation.

08/07/2011

Acknowledgements

This research was funded through the National Strategic Grant Research Program in 2009. The authors would like to thank the Directorate General of Higher Education, Ministry of National Education of the Republic of Indonesia and PT Berau Coal for their support in this research

 Thank you

 Opportment of Mining Engineering - Bondung Institute of Technology
 08/07/2011