Controlling Sulfidic Tailings Oxidation with Surface Application of Crude Glycerol – Column Experiments

Mehroosh Behrooz
Robert C. Borden
North Carolina State University

Ore Knob Mine
• Former copper/zinc mine
• Mining began in 1850s
• Abandoned in 1962
• Some remediation work in 1980s
• Listed on EPA NPL in 2009

Ore Knob Branch
• pH = 2.9-3.4
• Acidity = 420 – 2100 mg/L
• Fe = 200 – 900 mg/L
• SO4 = 700 – 3300 mg/L
• Al = 3 – 31 mg/L
• Cu = 0.1 – 0.8 mg/L
• Zn = 0.7 – 3.3 mg/L

Treatment Approach
• Approach
 – Surface apply ~ 2.5 cm crude glycerol
 – Allow to infiltrate with rainfall
• Treatment Concept
 – Glycerol consumes oxygen
 – Ferments to H2 and fatty acids
 \[
 C_3H_5(OH)_3 + 3H_2O \rightarrow 3CO_2 + 7H_2
 \]
 \[
 4H^+ + 2H_2^+ + SO_4^{2-} \rightarrow H_2S + 4H_2O
 \]
• Crude Glycerol
 – Byproduct of biodiesel production (0.1 Kg / Kg biodiesel)
 – Worldwide glut in 2007-2008
 – Chemical Oxygen Demand = 1.1 g/g
 – Contains some residual caustic (0.1 g/g)
 – Soluble, easy to infiltrate

Glycerol Pilot Test
• Four experimental columns
 • 140 cm x 30 cm diameter
 • Packed with fine grained, reduced tailings
 \(pH = 4.3, D_{50}=40 \mu m \)
 • Buried in pile
 • Redox electrodes & porous cup samplers at 25 cm intervals
 • Bottom drain
 • Glycerol added 6 months after construction
 • Two columns as untreated controls

Results
• Untreated
 – pH = 4.3 – 5.0
 – Acidity = 1000 – 1200 mg/L
• Treated
 – pH = 6.6-6.7
 – Acidity = 30 - 70 mg/L

© by Authors and IMWA
12-15 Months after Glycerol Addition

- TOC = 2200 mg/L
- Fe = -96%
- Acidity = -96%
- SO₄ = -55%

12-15 Months after Glycerol Addition

- Al = -99%
- Cu = -78%
- Mn = -97%
- Zn = -7%
- H₂S ~ 3 mg/L

Conclusions

- Waste glycerol easy to apply and infiltrate
- Glycerol addition resulted in large, statistically significant improvement in:
 - pH, Acidity, Fe, SO₄
 - Al, Cu, Mn
 - Maximum H₂S production at 15 months
 - Large amount of TOC in soil at 16 months
- Future work - geochemical modeling