

## 1. Introduction

- Brazilian ROM coal contains high levels of impurities (rock minerals and pyrite), hardly ever, requiring concentration methods to reach current Brazilian power station's standards
- about 65% of Brazilian ROM coal are discharged as waste, generating AMD with the well known environmental impacts and economic costs
- coal tailings are the main environmental liability of the Brazilian coal-based industries
- important efforts have been carried out to treat the AMD and to recover degraded areas. We consider that part of the solution is to provide a useful destination to the coal tailings, considering the principles of sustainable development and zero waste mine













60

2.5

3

1.5 2

4

| relative<br>density | size<br>(mm) | sulphur<br>(%) | ash<br>(%) | mass<br>(%) | XRD results*                 | possible<br>products                                                                                                 |  |
|---------------------|--------------|----------------|------------|-------------|------------------------------|----------------------------------------------------------------------------------------------------------------------|--|
| - 2.3               | + 2.0 - 50.8 | 2.3            | 60.8       | 8.4         | gypsum; kaolinite;<br>quartz | - energetic coal                                                                                                     |  |
|                     | + 0.1 - 2.0  | 3.3            | 60.5       | 6.8         | gypsum; jarosite;<br>quartz  |                                                                                                                      |  |
| + 2.3 – 2.8         | + 2.0 - 50.8 | 1.8            | 87.7       | 50.8        | quartz; plagioclase          | construction;<br>- ceramic;<br>stonemeal;<br>backfill                                                                |  |
|                     | + 0.1 - 2.0  | 2.8            | 87.7       | 5.8         | gypsum; quartz               |                                                                                                                      |  |
| + 2.8               | + 2.0 - 50.8 | 38.0           | 66.4       | 7.8         | quartz; pyrite               | sulphuric acid,<br>ferric coagulant,<br>ferrous sulphide,<br>ferric oxide<br>nonoparticles;<br>inorganic<br>pigments |  |
|                     | + 0.1 - 2.0  | 17.8           | 76.2       | 1.4         | quartz; pyrite               |                                                                                                                      |  |
| N/D                 | - 0.1        | 3.1            | 67.6       | 19.0        | gypsum;<br>quartz            | energetic coal                                                                                                       |  |





Sulfur lean tailings (between 2.3 - 2.8)

## • R&D opportunities:

- Construction
- Ceramic

## Backfill

• Tailing (less environmentally aggressive)

|                                             | mass<br>(ton) | sulfur<br>(ton) | NAP<br>(kg CaCO <sub>3</sub> /ton) |
|---------------------------------------------|---------------|-----------------|------------------------------------|
| Nowadays                                    | 11.000.000    | 638.000         | -162,5                             |
| With pyrite and<br>energetic<br>utilization | 6.226.000     | 147.840         | -62,5                              |

## 5. Conclusions

- The particle size analyses showed the following distribution by weight: 67% "coarse" particles (-50.8mm +2.0mm), 14% "fine" particles (-2.0mm +0.1mm) and 19% "slurry" (-0.1mm)
- Fine particles and coarse particles blended with the "slurry" could be used as energetic coal with 64.5% of ash and 2.9% of sulfur. Reaching a theoretical recovering by 34.2% of the whole deposit
- A concentrated of pyrite could be found in densities above 2.8, given a total theoretical recovery of 9.2%, with about 65% of pyrite

- The remaining material 56.6% (6,226,000 tonnes) are lower in pyrite and less aggressive to the environment. The total sulfur content of the deposit would decrease from 5.2% to 1.9% (60%)
- This approach brings a new outlook to tailings management in the Brazilian coal-based industries
- The study showed that it is possible to decrease or even eliminate the environmental liabilities of coal tailing deposits by means of research, development and innovation (R&D&I)

