Expanding Sulphide Use for Metal Recovery from Mine Water

Doug Warkentin, Norm Chow, Anca Nacu

IMWA Conference 2010 – Sydney, Nova Scotia September 6, 2010

© Kemetco 2010. All Rights Reserved

REMETCO

Effective metal removal

• High reagent and handling costs

• Limited current use: Difficult metals (e.g. Cd removal)
 High value (e.g. Ni recovery)
 Specialized hydromet uses (e.g. Ni-Co separation)

· Increasing operating experience Separation of metals
 Solid-liquid separation

© Kemetco 2010. All Rights Reserved

REMETCO

Kemetco Research - Biometals Process

 Developing a new approach to biogenic sulphide generation Low cost reagents
 Operating efficiencies
 Product/by-product values
 Stage 2 laboratory development underway
 Patenting in process

Objective: Very low net-cost reagent sulphide
 Expanding scope of feasible applications

 Testing for old and new applications
 individual metal recovery from ARD
 Sequential recovery from complex drainage New hydrometallurgical applications

• First site pilots in planning stage

© Kemetco 2010. All Rights Reserved

KEMETCO

Sulphide Treatment Flowsheet 1

- Weak ARD with high flow - Cu, Zn and Cd main contaminants of concern

© Kemetco 2010. All Rights Reserved

REMETCO

Flowsheet 1 – Laboratory Results

Sample	Flow (m ² /day)	рН	Cu (mg/L)	Zn (mg/L)	Co (mg/L)	Ni (mg/L)	Cd (mg/L)	Al (mg/L)	Fe (mg/L)	Mn (mg/L)	
Flowsheet 1 Feed	12,000	4.3	14.3	17.8	< 0.1	<0.1	0.09	13.3	0.4	3.65	
Stage	рН	Reagents Added		Bio-alkalinity (g/l)		Cu (%)	Zn (%)	Cd (%)		Al (%)	
Feed	4.3	-		-		0	0	0		0	
Copper Recovery	3.7	H ₂ S		-		98	0	50	6	0	
Zinc Recovery	4.0	H2S/alk.		3.7		100	98	98 10		5	
pH Adjustment	6.2	alkalinity		70.4		100	100	10	0	98	

• Eliminates lime use and minimizes waste sludge generation • Biological alkalinity sufficient for pH control

• Metal products off-set other operating costs

• Cu product up to 56% Cu produced in lab work •Product value of \$700/day net of process inputs

© Kemetco 2010. All Rights Reserved

REMETCO

Flowsheet 2 – Laboratory Results

Sample		Flow (m ³ /day)	pН	Cu (mg/L)	Zn (mg/L)	Co (mg/L)	Ni (mg)		Cd mg/L)	Al (mg/L)	Fe (mg/L)	Mn (mg/L
Sample B – High Strength		2,500	2.7	67	181	4.65	9.68		1.37	950	872	184
Stage	рН	Reagen		Addition (g/l)	1 Cu (%)	Zn (%)	Co (%)	Ni (%)	Cd	Al (%)	Fe (%)	Mn (%)
Feed	2.5	-		-	0	0	0	0	0	0	0	0
Copper Recovery	2.3	H ₂ S		-	100	0	0	0	100	0	0	0
Al/CaSO4 Removal	4.9	CaCO ₃		5.1	100	8	0	0	100	98	0	1
Zinc Recovery	3.2	H ₃ S			100	97	0	0	100	97	10	1
Ni-Co Recovery	4.6	CaCO ₃ / H	4 ₂ S	0.3	100	100	100	100	100	98	4	4
Fe Removal	7.2	CaCO ₃		1.9	100	100	100	100	100	100	100	21
Final Treatment	8.1	Bio. Alki	al.	75	100	100	100	100	100	100	100	98

• Can replace lime with cheaper limestone

All metals removed at low pH except Mn (MnCO₃ @ pH 8)
 Reagent savings plus substantial metal product revenue
 Cu and Zn products to 45% Cu and 60% Zn produced in lab work

• Net reagent savings and product revenues >\$3000/day projected

© Kemetco 2010. All Rights Reserved

KEMETCO

Conclusions

Sequential multi-product sulphide precipitation flowsheets are now technically feasible:

• High grade metal products
• Reduced waste sudge volumes
• Improved water treatment
• Potential for reagent cost savings
With very low cost sulphide generated on site, new applications are possible:
• Advanced multi-stage treatment of ARD
• Metal recovery from heap leaching and other hydrometallurgical processes
• Metal extraction and recovery from solid wastes
Initial test results and economic analyses justify further development
• Step ipt projects under development

© Kemetco 2010. All Rights Reserved

REMETCO

Acknowledgement

Kemetco would like to acknowledge the financial support of the Canadian government, through the National Research Council's Industrial Research Assistance Program (IRAP).

> Kemetco Research Inc. #445 – 5600 Parkwood Way Richmond, BC, Canada V6V 2M2 604 273-3600 www.kemetco.com

Doug Warkentin Phone: 604 788-4478 email: dwarkentin@kemetco.com

© Kemetco 2010. All Rights Reserved