Expanding Sulphide Use for Metal Recovery from Mine Water

Doug Warkentin, Norm Chow, Anca Nacu

IMWA Conference 2010 – Sydney, Nova Scotia
September 6, 2010

Introduction: Sulphide Precipitation - Current Practise

- Effective metal removal
- High reagent and handling costs
- Limited current use:
 - Difficult metals (e.g. Cd removal)
 - High value (e.g. Ni recovery)
 - Specialised hydromet use (e.g. Ni-Co separation)
- Increasing operating experience
 - Separation of metals
 - Solid-liquid separation

Kemetco Research - Biometals Process

- Developing a new approach to biogenic sulphide generation
 - Low cost reagents
 - Operating efficiencies
 - Product/by-product value
 - Stage 2 laboratory development underway
 - Patenting in process
- Objective: Very low net-cost reagent sulphide
 - Expanding scope of feasible applications
- Testing for old and new applications
 - Individual metal recovery from ARD
 - Sequential recovery from complex drainage
 - New hydrometallurgical applications
- First site pilots in planning stage

Flowsheet 1 – Laboratory Results

<table>
<thead>
<tr>
<th>Sample Flow</th>
<th>Feed 12,000</th>
<th>pH</th>
<th>Cu</th>
<th>Zn</th>
<th>Co</th>
<th>Ni</th>
<th>Cd</th>
<th>Al</th>
<th>Fe</th>
<th>Mn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flowsheet 1 Feed</td>
<td>4.3</td>
<td>14.3</td>
<td>17.8</td>
<td><0.1</td>
<td><0.1</td>
<td>0.09</td>
<td>13.3</td>
<td>0.4</td>
<td>3.65</td>
<td></td>
</tr>
<tr>
<td>Stage pH Reagents</td>
<td>4.3</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper Recovery</td>
<td>-</td>
<td>98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc Recovery</td>
<td>4.0</td>
<td>3.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH Adjustment</td>
<td>6.2</td>
<td>70.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Eliminates lime use and minimizes waste sludge generation
 - Biological alkalinity sufficient for pH control
- Metal products off-set other operating costs
 - Cu product up to 56% Cu produced in lab work
 - Product value of $700/day net of process inputs
Flowsheet 2 – Laboratory Results

<table>
<thead>
<tr>
<th>Sample</th>
<th>Flow (m³/day)</th>
<th>pH</th>
<th>Cu (mg/L)</th>
<th>Zn (mg/L)</th>
<th>Co (mg/L)</th>
<th>Ni (mg/L)</th>
<th>Cd (mg/L)</th>
<th>Al (mg/L)</th>
<th>Fe (mg/L)</th>
<th>Mn (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample B – High Strength</td>
<td>2,500</td>
<td>2.7</td>
<td>67</td>
<td>181</td>
<td>4.65</td>
<td>9.68</td>
<td>1.37</td>
<td>950</td>
<td>872</td>
<td>184</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Feed</td>
<td>2.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Copper Recovery</td>
<td>2.3</td>
<td>H₂S</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Al/CaSO₄ Removal</td>
<td>4.9</td>
<td>CaCO₃</td>
<td>100</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>98</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Zinc Recovery</td>
<td>3.2</td>
<td>H₂S</td>
<td>100</td>
<td>97</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>97</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Ni-Co Recovery</td>
<td>4.6</td>
<td>CaCO₃/H₂S</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>98</td>
<td>4</td>
</tr>
<tr>
<td>Fe Removal</td>
<td>7.2</td>
<td>CaCO₃</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>21</td>
</tr>
<tr>
<td>Final Treatment</td>
<td>8.1</td>
<td>Bio. Alkal.</td>
<td>75</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>98</td>
</tr>
</tbody>
</table>

• Can replace lime with cheaper limestone
 - All metals removed at low pH except Mn (MnCO₃ @ pH 8)
• Reagent savings plus substantial metal product revenue
 - Cu and Zn products to 45% Cu and 60% Zn produced in lab work
 - Net reagent savings and product revenues >$3000/day projected

Conclusions

Sequential multi-product sulphide precipitation flowsheets are now technically feasible:
- High grade metal products
- Reduced waste sludge volumes
- Improved water treatment
- Potential for reagent cost savings

With very low cost sulphide generated on site, new applications are possible:
- Advanced multi-stage treatment of AMD
- Metal recovery from heap leaching and other hydrometallurgical processes
- Metal extraction and recovery from solid wastes

Initial test results and economic analyses justify further development
- Patenting initiated
- Site pilot projects under development

Acknowledgement

Kemetco would like to acknowledge the financial support of the Canadian government, through the National Research Council’s Industrial Research Assistance Program (IRAP).

Kemetco Research Inc.
#445 – 5600 Parkwood Way
Richmond, BC, Canada V6V 2M2
604 273-3600
www.kemetco.com

Doug Warkentin
Phone: 604 788-4478 email: dwarkentin@kemetco.com

© Kemetco 2010. All Rights Reserved