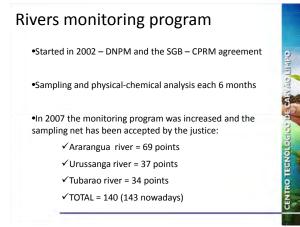
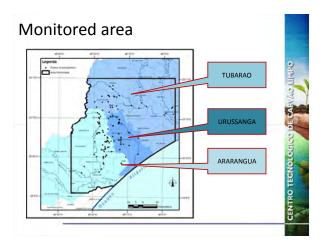
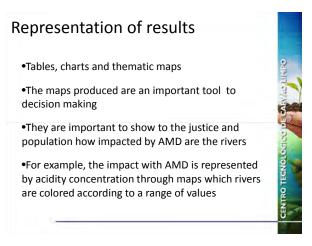

ualitative and Quantitative Representation	
of the Coal Mining Impact in the Rivers of	OEIMIT
Santa Catarina State, Brazil	C LIN
Mirlene Meis Amboni ¹ , Jonathan Jurandir Campos ¹ , Marcio Zanuz ¹ &	-
Cleber Jose Baldoni Gomes ²	U int
ISATC – Santa Catarina State Coal Industry Beneficent Association, Pascoal Meller, 73, Criciuma, SC, 88805-380, Brazil, mirlene.amboni@satc.edu.br; ionathan.campos@satc.edu.br;	- Carrier
marcio.zanuz@satc.edu.br	-
² SIECESC – Santa Catarina State Coal Producers Association, Pascoal Meller, 73, Criciuma, SC, 88805- 380, Brazil, cleber.gomes@satc.edu.br	5
560, Brazil, Clevel.gomes@satc.edu.or	50
11111 SALA	đ
IMWA 2010 =	2
Mine Water & Line	8
Innovative	
Thinking	2
September 5 9, 2010	Ę
CAPE BEFICE	CENTRO

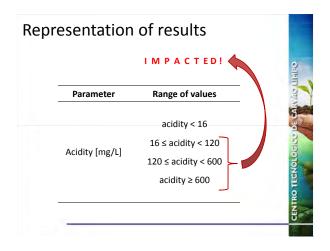


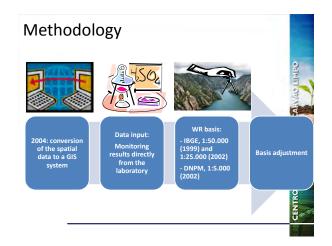
Context

- 1993: ACP | 2000: sentence | 2002 and 2006: reviews | 2007: created the technical advisory group (GTA)
- Reclamation of coal mined impacted area in Southern of Santa Catarina State, including water resources in three watersheds: Ararangua, Urussanga e Tubarao
- Conceptual Environmental Reclamation Project for the Santa Catarina Coalfield (CETEM and CANMET, 2001)
- Studies concerning characterization in the impacted watersheds, including a monitoring program
- 22 campaigns have been already performed so far biannual

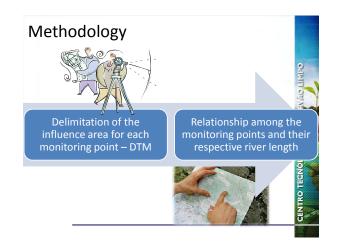


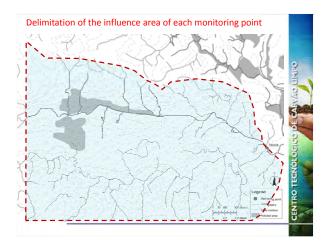


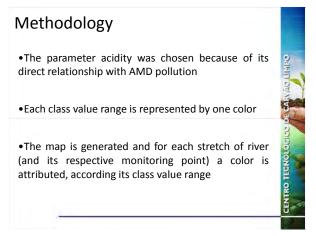


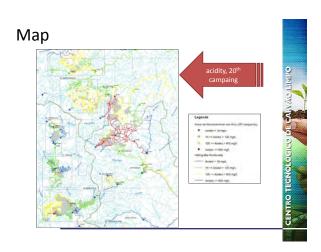

Monitored parameters

Parameter	Minimum
pH (23 °C)*	0,1
Acidity (mg _{CaCO3} .L ⁻¹)	1
issolved oxygen (mg.L ⁻¹)*	0 a 20
onductivity (µS.cm ⁻¹)**	0,001
ron (total) (mg.L ⁻¹)	0,02
/langanese (total) (mg.L ⁻¹)	0,01
luminum (total) (mg.L⁻¹)	0,1
ulphate (mg.L ⁻¹)	0,1
low (L.s ⁻¹)*	
ſemperature (°C)*	
Precipitation (mm/moth)	
easured in the field, during the sampling Measured in the field and in laboratory	
ecipitation (mm/moth)	

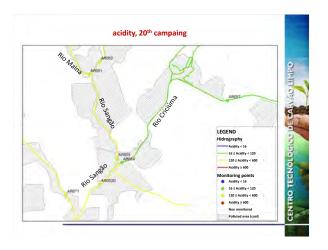








Methodology


•After the relationships of the geographical features, some procedures were performed in order to classify and quantify the data base in ArcGIS[©]

- •Data filtering, according to the campaign which should be analysed
- •Relationship between both hydrography attribute and monitoring results are generated by GIS system and are shown in tables
- •As result it is generated a visualisation interface where data
- •Finally, the relationship between the hydrographical feature and the monitoring results is provided

consulting is possible

		Total river ler	ngth [km]		Percentage
Acidity classes (mg/L)	Ararangua	Urussanga	Tubarao	Total	reitentage
acidity ≥ 600	52	58	21	131	0.6%
120 ≤ acidity < 600	232	50	216	498	2.5%
16 ≤ acidity < 120	179	112	147	438	2.2%
acidity < 16	44	57	124	225	1.1%
Non-monitored	5,257	1,299	12,366	18,922	93.6%
Total	5,764	1,575	12,874	20,214	100.0%
Total length of polluted rivers [km]*	463	219	384	1,067	5.3%
* (acidity > 16 mg/L)	8.0%	13.9%	3.0%	5.3%	

Watershed	Total area [ha]	Polluted area [ha]	%
rarangua	302.540	3.638	1,20
barao	596.023	1.942	0,33
ussanga	70.890	762	1,07
al	969.453	6.342	0,65

Watershed	Coal po	ollution
watersneu	surface area	river lengt
Ararangua	1.2%	8.0%
Urussanga	1.1%	13.9%
Tubarao	0.3%	3.0%
Total	0.7%	5.3%
Total		

Conclusions

- Although Urussanga watershed be the smallest monitored area in this reclamation program (709 km²) it is proportionally the most AMD polluted one (14% of its total rivers length)
- ii. In another hand, Tubarao watershed, that has 5,960 km², shows only 3% of its total rivers length polluted
- iii. Ararangua (3,025 km²) has 8% of its total rivers length polluted
- iv. Roughly 5% (1,067 km) is polluted by AMD in the three watersheds
- v. Besides acidity, any other parameter can be represented through thematic maps

Ş

CENTRO TECNOL

