

• The main coal mines in Brazil are located in the South States of the country.

Introduction

Introduction

- Resources of coal in Brazil are approximately 32 billion tons, but only 2% have been extracted.
- The beneficiation of coal in Brazil generates a great volume of tailings (from 50% to 70%).
- In the composition of coal tailings it is found pyrite (FeS_2) , which is the responsible mineral for the production of the acid mine drainage (AMD).

Generation of AMD

Acid mine drainage (AMD) is generated from the pyrite present in coal tailings that in contact with oxygen and water oxidize generating a solution with:

low pH;
high contents of iron;
sulfate and other dissolved metals.

Area with generation of acid mine drainage (AMD)

How to solve this problem ???

Possible Uses of Pyrite

General Objective

Production of ferrous sulfate by hydrometallurgical process!

Pyrite Oxidation and Bacterial Action

The bacterial action can increase the oxidation of pyrite (2) by a factor of 10^6 .

$$2FeS_{2}(s) + 7O_{2}(aq) + 2H_{2}O \rightarrow 2Fe^{2+} + 4H^{+} + 4SO_{4}^{2-} (1)$$

$$4Fe^{2+} + O_{2}(aq) + 4H^{+} \rightarrow 4Fe^{3+} + 2H_{2}O \qquad (2)$$
There, it increases the amount of ferric iron in acid mine drainage (AMD)
These bacteria come from the genus

Main Objective

▶ To develop a route for the production of ferrous sulfate n-hydrated crystals (FeSO₄ nH₂O) from pyrite present in coal tailings.

Uses of Ferrous Sulfate (FeSO₄)

Ferrous sulfate has great use in our daily lives, in the health area, agriculture, industry, among others.

Wastewater Treatment

© by Authors and IMWA

Experimental Methodology: 2nd STEP

Conversion of Fe³⁺ to Fe²⁺

Picture of Photoreactor

Experimental Methodology: 2nd STEP

Crystallization of Ferrous Sulfate

Purified with ethylic alcohol

Analysis: - XRD (X-ray Diffraction) - SEM (Scanning Electron Microscopy)

Results: 2nd STEP

Results: 2nd STEP

Ferrous Sulfate Crystals

Crystals of ferrous sulfate obtained in the columns 2 and 3

Results

• The recovery of Fe in the form of melanterite in relation to the pyritic iron existing in the columns ranged from 7.5 to 9.0%.

	RECOVERY (%)		
COLUMNS	Fe melanterite /	Fe melanterite /	Fe melanterite
	Extracted Fe ²⁺	Total Extracted Fe	Pyritic Fe
Column 1			
Control	0.0	0.0	0.0
Column 2			
UV-3 Lamps	75.0	50.0	9.0
Column 3			
UV-10 Lamps	63.7	53.7	8.5

Characterization of ferrous sulfate obtained by XRD and SEM. The crystalline compound obtained was the melanterite ($FeSO_47H_2O$).

Conclusions

• The results showed that it is possible to produce ferrous sulfate heptahydrate from coal tailings using a leaching process under the action of ultraviolet radiation (UV).

• A new technology for commercial production of ferrous sulfate was developed using coal tailings as raw material, minimizing the environmental impact and making possible the development of a new product in coal mining in Brazil.

Acknowledgements Thanks everybody for the attention! Sydney, Nova Scotia, Canada September 06th, 2010.