Sustained Treatment of AMD Containing Al and Fe³+ with Limestone Aggregate

Neil Wolfe and Robert Hedin Hedin Environmental

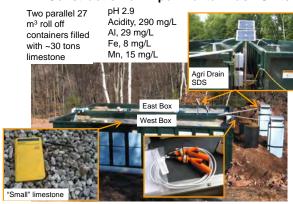
IMWA 2010, Cape Breton

Limestone Advantages

- · Limited solubility
 - cannot over-treat
 - Can install years of treatment capacity
- Can store on site in open piles without loss
- Not hazardous
- Less than 20% the cost of lime and caustic alternatives

Limestone Disadvantage

- When exposed to acidic water containing Al and Fe³⁺, solids quickly form
- Solids foul limestone aggregate, greatly decreasing its effectiveness



Project Goals

Understand the ways that the limestone treatment effectiveness is reduced by Al and Fe solids.

Develop a treatment approach can overcome these limitations and provide sustainable treatment of low pH AMD with limestone aggregate

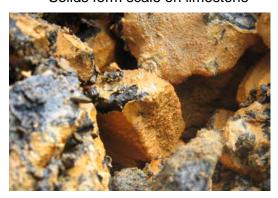
Construction of Experimental Flush Units

Experimental

- Measure performance of limestone units
 - Influent and effluent samples
 - pH, alkalinity, acidity, sulfate
 - Total and dissolved Al, Fe, and Mn
- · Vary operational parameters
 - Flow rate
 - Water level in limestone bed
 - Drainage trigger (time, water level, chemistry)

Solids

Solids form when alkaline conditions arising from calcite dissolution cause:

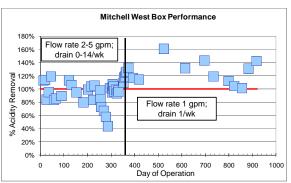

- Al³⁺ → Al(OH)₃
- Fe³⁺ → Fe(OH)₃

Solids accumulate in the aggregate in two manners

Solids accumulate in pores

Solids form scale on limestone

Scale flakes off revealing clean LS surface


What happens when a limestone bed is drained empty?

- Solids in aggregate pores are flushed away
 porosity is restored
- Some scales are dislodged, exposing clean limestone surface
 - Alkalinity generation is restored

Treatment Goal

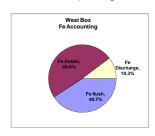
- Identify the retention time necessary to achieve treatment goals
- Identify the bed drainage schedule that maintains treatment effectiveness

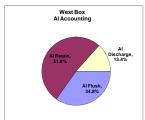
Long-term alkalinity generation

Average effluent chemistry since change to 1 gpm and 1/wk drainage (580 days)

	рН	Acid	Fe	Al	Mn
Influent	3.0	246	9.7	27.2	14.6
Effluent	6.9	-60	0.6*	2.6*	2.8**

Metals are mg/L and acidity is mg/L CaCO₃
*Suspended solid: **dissolved


Average effluent chemistry since change to 1 gpm and 1/wk drainage


Location	рН	Acid	Fe	Al	Mn
Influent	3.0	246	9.7	27.2	14.6
Effluent	6.9	-60	0.6*	2.6*	2.8**

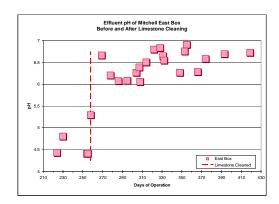
Metals are mg/L and acidity is mg/L CaCO₃
*Suspended solid: **dissolved

Average alkalinity generation rate: 100 g/m²/day

Solids in a drained limestone bed (average over 917 day period)

Solids accumulation will eventually affect calcite dissolution and bed performance:

 Limestone must be either replaced or cleaned


Cleaning limestone bed with an excavator and AMD flow

Cleaned limestone aggregate

- · Cleaning cost: \$5/ton
- New limestone costs \$22/ton

Summary

- Effective treatment of acidic Al and Fe³⁺
 contaminated mine water can be achieved with
 limestone aggregate as long as the bed is
 regularly drained empty.
- 2. Fouled limestone aggregate can be cleaned and its alkalinity generation restored.
- 3. Sustainable Mn removal can be achieved at pH levels between 6.5 and 7.0.