The importance of geotechnical and structural characterisation in predicting fracture flow to mines

James Bellin¹, Chris Bonson¹, Alice Jack¹

¹SRK (UK) Ltd., Churchill House, Churchill Way, Cardiff, CF10 2HR, Wales, j.bellin@srk.co.uk

Introduction

- Accurate inflow predictions allow efficient and safe mining below the natural gwL.
- Multi-disciplinary studies = more data and more (varied) experience.
- How can geotechnical and structural assessment help with inflow predictions particularly wrt EPM modelling approach.

Geotechnical Characterisation

Non-orientated:
- RQD, FF, aperture, other props.
- Most useful in conjunction with local-scale hydraulic testing.
- During field campaign to identify intervals for hyd. testing Orientated (α, β):
 - To evaluate major joint set orientations and resulting anisotropy e.g. K tensor.
 - Non-orientated data can be used to filter orientated data...

Filtering out gouge filled and small aperture fractures can help to pick out “hidden” but hydrologically significant fracture sets

a) Fisher concentrations contoured stereoplot of orientated fractures logged from acoustic televiewer logging of a diamond drilled borehole
b) As a) but filtered for clean/sand/gravel filled fractures only with an aperture of >5mm

Structural Characterisation

Data sources:
- Any cored drilling data. Risk of non-unique interpretations. Combine with other data such as:
 - Field mapping of outcrops/existing excavations
 - Geological survey maps
 - Geophysics
 - Remote sensing
 - Hydrological test results e.g. boundary effects in a pumping test response, spinner tests.

Major Limitations:
1) Scale of investigation. If borehole scale data sufficient to characterise the rock mass at the scale of our model? Is an EPM approach even valid?
2) If not, how do we upscale appropriately?

Assessment of brittle deformation at a regional scale required to supplement local scale geotech. data.
Structural Characterisation

- Faults are not homogeneous along their length.
- Bonson et al. (2004) found more intense fracturing to be associated with fault bends, branch lines and relay zones.

Example Approach

Geotechnical data:
- Orientated diamond drilling
- Manual logging: RQD, FF, α, β, infill, roughness.
- Acoustic televiewer: α, β, aperture, infill.

Hydrological testing:
- Bulk hyd. props and anisotropy investigated with pumping tests (multiple observation wells).
- Direct measurements of fractures and fault zones with packer tests.
- Flow from identified fractures and fault zones, and general flow/depth profile investigated using spinner tests.

Example Approach

Aquifer Characterisation:
- Clean, steeply dipping faults identified as lineaments of high permeability at both sites.
- K tensor estimated from local and regional scale fracture distribution and associated hyd. testing.
- Analytical and numerical FE models constructed for both sites.
- FE model anisotropic (grid aligned to main K tensor axes).
Example Approach

Inflow prediction:
- Site 1: structurally controlled anisotropy present but not significant enough to materially affect predicted inflows.
- Site 2: taking into account anisotropy ($K_x = K_z > K_y$) reduced inflows by ~20% due to a change in the interaction with a CHB (large river) and predominant flow along strike of pit (where cross-section open to flow is lower).
- Whether or not it effected the final inflows, a structural characterisation was critical in both cases in order to validate EPM approach...

Summary

- Scale dependence of the properties (physical and hydraulic) of fractured media requires that any hydrogeological investigation programme in fractured rock should acquire data over a range of scales.
- Data from geotechnical investigations can provide us with local-scale fracture properties, which is most useful when complemented with discrete interval hydrological testing.
- But local-scale information must be taken in the context of the wider structural setting such that these measurements can be up-scaled to suit the mine water flow model domain.