

Mine Water Treatment with Cement Kiln Dust (CKD)

Allison Mackie, BEng, MASc Candidate Department of Civil and Resource Engineering IMWA 2010, September 6th, 2010

- Sulphide ores
 Pyrite, FeS₂
 - Sphalerite, ZnS
- Low pH, high soluble metals
- Generated for decades to centuries

- Lime (CaO)
- Previous studies
 - Effective for target metal removal
 - Dry material
 - Limited CKD samples
 - Synthetic wastewater
- Trace metal concentrations

- To evaluate the potential of substituting quicklime with CKD in active mine water treatment
 - Acid neutralization
 - Metals precipitation
 - Treated, settled water quality

Cement Kiln Dust

Sample	Specific Surface Area (m²/g)	Median Particle Size (μm)	Total Lime (wt %)	Free Lime (wt %)
CKD-A	0.502	8.5	44	15
CKD-B	0.350	15.9	48	9
CKD-C	0.471	20.5	40	5
CKD-F	0.393	21.2	57	37
Quicklime	0.164	32.0	90	87

Mine water

lead/zinc mine

- 3 liquid waste streams

Analyte	Mine Effluent	Discharge Regulation*
рН	2.4 ± 0.1	6.0 - 9.5
TSS (mg/L)	70 ± 50	15
Zinc (mg/L)	122 ± 15	0.5
 Dissolved 	115 ± 18	
Iron (mg/L)	429 ± 78	
 Dissolved 	399 ± 78	

- CKD is as effective as quicklime in neutralization of acidity and precipitation of soluble metals
- Low free lime CKDs vs. Quicklime:
 - Higher slurry volume required for neutralization
 - Comparable metals precipitation and removal

Recommendations

Higher TSS concentrations after settling

• Sludge characterization (i.e. CST, TCLP)

• Effect of sludge recycle (i.e. HDS)

• Pilot and full scale studies

Lower sludge volume after settling

- CKD-F vs. Quicklime
 - Similar slurry volumes required
 - Comparable metal precipitation and removal
 - Comparable TSS concentrations after settling
 - Lower sludge volume after settling
- Increased settling time
 - Significantly reduced TSS and final total metal concentrations in mine water treated with CKD-B slurry
 - No effect with CKD-F or quicklime

- Natural Sciences and Engineering Research Council of Canada (NSERC)
- Colin Dickson, Cement Association of Canada, Portland Cement Association
- Chris Petrie, Xstrata Zinc
- Heather Daurie, Brian Kennedy, Brian Liekens, Blair Nickerson
- Margaret Walsh PhD, PEng
- CKD Suppliers (LaFarge NA, Holcim, Cemex, Ash Grove Cement)

Inspiring Minds

