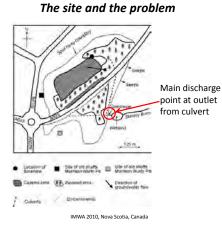
A case study of long-term geochemical evolution of coal waste rock drainage and its remediation

Adam Jarvis

Head of HERO Group Senior Lecturer, School of Civil Engineering & Geosciences, Newcastle University, UK


IMWA 2010, Nova Scotia, Canada

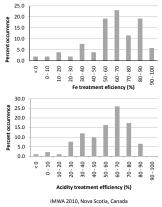
IMWA 2010, Nova Scotia, Canada

The site and the problem

Discharge water quality

	Mean	Maximum	Minimum	n
pH	6.4	8.9	4.2	164
Conductivity (µS/cm)	6216	14030	280	147
Alkalinity (mg/L as CaCO ₃)	59	136	0	149
fron (mg/L)	5.0	20.5	0.5	182
Manganese(mg/L)	3.3	8.6	0.4	180
Aluminium (mg/L)	4.7	13.6	0.1	171
Zinc (mg/L)	1.2	4.1	0.1	123
Calcium (mg/L)	203	408	47	117
Magnesium (mg/L)	64	141	8	117
Sodium (mg/L)	1091	3251	140	117
Potassium (mg/L)	132	505	17	116
Sulphate (mg/L)	717	1541	106	174
Chloride (mg L)	1788	4535	220	154

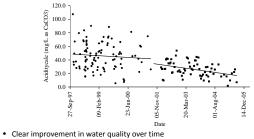
IMWA 2010, Nova Scotia, Canada


Wetland treatment system

- Discharge from waste rock pile caused discoloration of the local watercourse
- 500 m² compost treatment wetland system constructed in 1997
 Overall size of wetland constrained by land availability (a common issue in the UK)
- A charitable project
- Wetland system constructed in collaboration with the residents of the local village, Quaking Houses

IMWA 2010, Nova Scotia, Canada

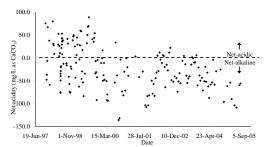
Wetland treatment performance



Wetland treatment performance

IMWA 2010, Nova Scotia, Canada

Long-term evolution of waste rock drainage



- Much quicker improvement than predicted by pyrite oxidation and dissolution modelling
- Result of partial capping of the heap in areas known to be acid-generating (and probably also natural re-vegetation of the heap)

IMWA 2010, Nova Scotia, Canada

Wetland system renovation

Long-term evolution of waste rock drainage

- Since around 2003 drainage net-alkaline
- Change in water quality influenced renovation of wetland system primary objective removal of marginally elevated iron concentrations

IMWA 2010, Nova Scotia, Canada

Wetland system renovation

- British Standard (BS) leachability tests showed substrate could be disposed of as 'inert' waste (concentrations below Waste Acceptance Criteria (WAC) as inert waste).
- · Note that iron and aluminium not required determinants for leaching tests (but Fe present at ~ 60 000 mg/kg)
- Disposal as inert waste significantly reduced overall costs of renovation

Period	L/S Ratio	CI-	SO42.	Zn	As	Cd	Cr	Cu	Ni	Pb
6 hrs	A ₂ (mg/kg dry matter)	694	1494	0.04						
18 hrs	A ₈ (mg/kg dry matter)	661	2819	0.29	0.05	0.01	0.01	0.01	0.01	0.05
24 hrs	A ₁₀ (mg/kg dry matter)	455	1996	0.08	0.100	0.02	0.02	0.0	0.02	0.10
	WAC limit (mg/kg) L/S ₁₀	800	6000	4	0.5	0.04	0.5 (total)	2	0.4	0.5

IMWA 2010, Nova Scotia, Canada

Key issue during renovation was disposal of compost wetland substrate (above)

IMWA 2010, Nova Scotia, Canada

Full life-cycle wetland costs

- Original wetland cost approximately £60 000 to construct (~ CAN \$100 000)
- Renovation cost approximately £50 000
- Therefore over 8 years of operation cost was $^{\sim}\, \pm 14\,000$ / annum
- · No question that system would have performed for longer with basic maintenance programme in place e.g. reed clearance
- · For other wetland systems costs may be significantly greater if other, potentially more eco-toxic, metals present in exhausted substrate

IMWA 2010, Nova Scotia, Canada

Conclusions

- Modestly-sized compost wetland successfully attenuated acidity and metals in waste rock drainage
- Improved maintenance programme would likely have extended lifetime of original system
- Land availability always an issue in UK, and therefore such passive systems always likely to need renovation at some point – cannot ignore / overlook this requirement
- Presence of potentially eco-toxic metals might significantly increase costs of renovation
- Selective capping of waste rock appears to have resulted in improved drainage quality, which should extend lifetime of renovated system, further reducing future costs

IMWA 2010, Nova Scotia, Canada