

Outline

- > World Lithium Demand
- > Lithium Sources
- Salar Geology
- > Lithium Americas Program
- > Conceptual / Numerical Salar Brine Model
- > Ongoing Work

		Hard Rock Mining		Lithium Brines
iource:	>	Vein deposits	>	Salar lake deposits
ning Method:	>	Hard rock conventional open pit mining	>	Pumping and evaporation
linerals:	>	Spodumene, petalite, lepidolite, ambligonite	>	In solution in hypersaline brines
ain Producers:	>	Australia, Canada, India, China, Zimbabwe	>	Chile, Argentina, China, US
/orld Resources:	>	8.9 million t (26% of world resource)1	>	25.5 million t (74% of world resource)
orld Production:	>	7,700 t Li (33% of world production)2	>	15,107 t Li (67% of world production)2
oduction Costs 008)	>	\$4,300 - \$4,800 per tonne ²	×	\$2,300 - \$2,600 per tonne ²

Brine

exploration potential still	to the north and the south	h	nth all dhil holes open at depth
Project Name	Company	Country	Lithium Carbonate Resource
Uyuni 1	Comibol	Bolivia	29,150,000*
Salar de Atacama 1	SQM	Chile	26,500,000*
Zabuye 1	Zabuye	China	8,109,000*
Salar de Rincon ¹	Sentient Group	Argentina	7,435,900*
Dongtai 1	Qinghai	China	6,890,000*
Salar de Cauchari	Lithium Americas	Argentina	4,900,000
Salar de Hombre Muerto 1	FMC	Argentina	4,505,000*
Salar de Atacama 1	Rockwood	Chile	2,650,000*
Xitai ¹	Qinghai	China	2,650,000*
Salar de Olaroz ²	Orocobre	Argentina	1,500,000*
Silver Peak 1	Rockwood	USA	530,000*
The Economics of Lithium, Eleventh			
dalas 2000 Baskillist			

PUNA PLATEAU

□Argentina, Bolivia, Chile □High desert environment between two ridge lines of the Andes

Inward drainage + evaporation leads to concentration of salts

PUNA SALARS

Germed in dropped horst and graben basins in the Puna Plateau

Compression and expansion faulting due Andes mountain building

Concentration of salts from salar watersheds

Hydrothermal fluid inputs to salars through the basin faults

Cauchari Salar Geology

- > Sediments in the Cauchari basin are Pleistocene or younger
- > Can be simplified into three main hydrogeological units
 - Upper Mixed Sequence from 0 m to 40 m in thickness low permeability
 - Thin Bedded Sequence 0 m to 176 m in thickness moderate permeability
 - Coarse Bedded Sequence up to at least 310 m in thickness main aquifer
- > Low permeability alluvial fans on the salar boundary

7/8/2011

Next Numerical Modelling Steps

- More detailed representation of geologic layers
- Implement full 3D flow, density and transport
- Calibrate to Pumping Tests
- Use calibrated Model to support Recoverable Reserve Estimates and design of Production Well Field

Current Program

Pumping well installation / Pump tests
3D Brine Model
Pilot process plant, engineering
Measured Resource Report: Q4 2010
Recoverable Reserves Report: mid-2011

LITHIUMAMERICAS 23

