Water management issues in the underground gasification of coal and the subsequent use of resultant voids for long-term CO₂ Storage

1 Paul Younger FREng
2 Gerardo González
3 Jaime M. Amezaga

Newcastle University
1 Director, Newcastle Institute for Research on Sustainability
2 PhD Student, Sir Joseph Swan Centre for Energy Research
3 Senior Lecturer, HERO Group, School of Civil Eng. & Geosci.

Overview

• The UCG process
• Coupling UCG directly to CCS
• Groundwater issues in UCG
• Risk assessment for CCS in UCG goaf

Underground Coal Gasification

UCG - CCS
... with carbon capture and storage

The process: UCG

Production well
Injection well
100m to >1000m

After UCG - goaf formation

Synthesis gas to power station / refinery
Steam / O₂ injected
• First UCG experiments were carried out in County Durham, UK, by Sir William Ramsay in 1912 - experiments halted by World War I
• Stalin then adopted UCG in the former Soviet Union, where it has been undertaken at industrial scale since the 1950s
• Interest in UCG in the West waned with the development of abundant oil and natural gas
• Significant pilot trials in China
• Currently operating commercially in Australia

UCG to date ...

Groundwater issues in UCG

- Water quantity issues:
 - Some water is good (saves on generating steam at surface)
 - Too much water is bad (hinders ignition and burn zone propagation)
- Pollution concerns:
 - Organics: phenols, benzene, PAHs, heterocyclics
 - Inorganics: salinity (Na-Cl), NH₃, As, B, Zn, Se, U

Managing groundwater issues in UCG

- Water quantity issues:
 - Hydrologically intelligent selection of sites, seams and production scheduling in multiple seam sequences ("bottom-up" best)
- Pollution issues:
 - Use groundwater protection logic
 - Assess risk using the standard approach of: Source → Pathway → Receptor

Goaf

Image courtesy of UCG

UCG: history

Image courtesy of Underground coal gasification in action

Diesel production from UCG in Australia, using the Fischer-Tropsch process

Managing groundwater issues in UCG

© by Authors and IMWA
CCS – the aspiration

Underground gas storage: not a new technology

Up to 1000 tonnes of H₂ stored in solution mining caverns in salt in densely populated urban area – has operated safely for > 60 years

The vision: CCS in UCG goaf & overburden

- UCG likely to be undertaken closer to large static CO₂ sources than many spent oil and gas reservoirs (especially in N Sea region): saving on transit costs
- Typical permeabilities of goaf (1 to > 20 d) far greater those of deep saline aquifers (i.e. 0.01 to 1 d)
 - Thus it will be up to 2000 times easier to inject CO₂ into UCG goaf than into deep saline aquifers
- However, CO₂ occupies 3 – 5 times the volume of original coal: access to pore space in fractured overburden (above goaf) will also be required
- Hydrogeological experience from longwall mining gives abundant grounds for optimism over the development of CO₂ storage zones in goaf & fractured overburden

Risk assessment for CCS in UCG goaf

- Most of the contaminants produced during UCG are not very soluble in water
- However, super-critical CO₂ is one of the most powerful solvents known; it will dissolve them, so if CO₂ migrates, the contaminants will certainly migrate with it
- Hence for risk assessment of CCS in UCG goaf the only important task is to evaluate the risk of CO₂ migration
Risk assessment for CO$_2$ storage in UCG goaf / overburden

Man-made infrastructure likely to be principal risk pathway: cf. abandoned mine waters

Project Ramsay: assessing the UCG-CCS opportunity in North East England

- Multidisciplinary team of specialists led by Newcastle University assessed potential reserves, drilling and processing technologies, surface engineering issues, and financial scenarios
- Identified more than 5 billion tonnes of coal in workable seams at depths suitable for CCS in goaf and overburden
- Company now being established to pursue the opportunity commercially

Conclusions

- UCG has great potential to support the transition to a renewable energy future without further damage to the atmosphere
- Application of hydrogeological lessons learned during longwall coal mining suggests significant scope for CO$_2$ storage in and above goaf formed by collapse of UCG voids
- Groundwater issues can be managed using the same principles used in conventional mine water management situations

Thank you • Merci beaucoup • Tapadh leibh • Owela’in

“Jow’l the top an’ keep thi timmer in”

p.l.younger@ncl.ac.uk