

Outline

- Brief Introduction
 - Experimental approach for remediation/neutralization
 - Passive anoxic in-lake reactor (enclosure)
- Aim and Scope of Investigations
- How to prevent re-oxidation ?
- Results
 - Water chemistry
 - Sediment geochemistry
- Summary and general conclusions

Lignite mining districts of East Germany

Biological alkalinisation

Application of substrate June 2001

Enclosure LE-8: 6 m depth, 30 m ø = 4500 m³

4.2 t Carbokalk (10.7 mol TOC m-2)

6 t Straw = 400 straw bales (8.5 kg m⁻² = 436 mol TOC m⁻²)

Bozau et al. JGE 2007; Geller et al. JGE 2009

sulfate reduction netto << brutto

Neutralisation rates

	volume (m³)	neutralisation rate (eq m ⁻² a ⁻¹)
Laboratory column	0.088	15
Small enclosure	26	10
Big enclosure	4500	1.7

Scale effect ?

No sustainable precipitation of FeS/FeS₂ → Re-Oxidation

Application of whey

Date	kg
9.10.2007	50
6.11.2007	50
23.4.2008	50
6.8.2008	50
22.10.2008	50

C-concentration of whey = 380 g Kg⁻¹

50 kg whey = $2.3 \text{ mol m}^{-2} = 0.34 \text{ mmol C L}^{-1}$

for elimination of O ₂	41,6 kg
for elimination of iron	88,6 kg
in total	130,3 kg

Aims of experiment

- ➤ Is it possible to generate an anoxic water column within an enclosure and to maintain the anoxic conditions?
- Is it possible to reduce all ferric iron within the water in this way?
- Will the rate of neutralisation and the stability of the secondary sulfides be increased under the anoxic water conditions?

Material and Methods

status of sediment and porewater composition before experiment start and 1 year after experiment running

UMWELTFORSCHUNG

Status before application of whey in Oct. 2007

pH: 2.5 – 2.6

O₂: 55% at bottom of enclosure

Eh (in-situ): 450 mV at bottom of enclosure

Oxygen in the water column of LE-8

Physico-chemical profiles LE-8 black 2007 / red 2008

Iron within the water column of LE-8

Sediment

open symbols 2007 / closed symbols 2008

Sediment

open symbols 2007 / closed symbols 2008

Summary

- ➤ Consumption of O₂ in the water column
- > Only small decrease of redox potential in the water
- > No reduction of ferric iron to ferrous iron
- No change in pH-values within the water column and the sediment
- > Increase in total iron concentration in the top cm (*2)
- No precipitation and accumulation of TRIS on the top layer of the sediment

Conclusions

- 1. Is it possible to generate an anoxic water column within an enclosure and to maintain the anoxic conditions?
- > Yes, by application of whey and <u>continuous</u> re-application; after Oct. 2008 no new application of whey
- 2. Is it possible to reduce all ferric iron within the water in this way ?
- > No, the anoxic conditions reached were not sufficient
- 3. Will the rate of neutralisation and the stability of the secondary sulfides be increased under the anoxic water conditions?
- Unfortunately, not because of re-oxidation of secondary Fe-sulfides and H₂S by ferric iron

UFZ

