

Overview of presentation Approach Case study Discussion

End Goal

Model Setup	1	Model Outputs	
(Configuracion del Modelo)		(Resultado del Modelo)	
mulation Runtime Settinge onfiguración de la simulación)	Russie	Tailings pond conditions (Condiciones de la poza de miaves)	710
line Scheduling Page Entradies página principal)	Stelling	Freshwater Storage Results (Condiciones de las Pozat)	FW Sloves
Vaste Rock Gump Settings Configuración del Boladere)	Dures	Waste Rock Damp Results (Condiciones de la botadem)	Duran
SF Settings Establecer (as condiciones climáticas)	TSF settings		
It SWMS, and Treatment Settings	PCC/Textures	Water Quality (Calified del Aguar)	892
Nversion System Settings Configuración del systems de devisió de aguas)	Deser	Flow Resolts (Condiciónes Midrológicas)	Rees
et climate conditions Establecer las condiciones climáticas)	Dealer	Compliance Point Water Quality D	Complania WG
discettaneous Settings	-		
Eld Settings	DA.	-	-

Model Construction Approach

Approach

- Simplify existing operational water balance
- Model the geochemistry of each component separately (in Goldsim)
- Use waste schedule and static geochemical test results to define mass of reactants
- Use field kinetic cells to define expected rates
- Use monitoring record to define expected behavior and reasons for observations
 Apply applies
- Apply scaling
- · Compare model to field observations

Klohn Crippen Berge

Modeling platform GoldSim selected as

- platform
 - Allows dynamic modeling
 of complex systems
 - Widely used for mine water balances
 - Flexible
 - Internal consistency
 - Open-structure allows
 processes to be included
 as algorithms

Case Study-Antamina

- Compania Mineria Antamina (CMA) Cu-Mo-Zn mine operates at 4,200 m above sea level, Peru.
- Large Cu-Zn Skarn deposit
- Full production from 2001 with anticipated mine life of >23 years.
- Mine excavates up to 400,000 tonnes/day
- Waste rock stored in two WRD.
- On-site TSF
- Rainfall approximately 1,450 mm (seasonality)
- Developed model for closure and then for operations

Klohn Crippen Berger

Geochemical Data Sources

- Laboratory testing
 - Static testing
 - Humidity cells
 - Mineralogy
 - PSD
- Field kinetic testing
 - Field cells (78)
 - Instrumented Field piles (5)
- Field water quality monitoring records

Deriving the Geochemistry:

Geochemical considerations

- Largely NAF rocks but both acid and neutral metal leaching concerns
- Sulphide oxidation drives reactions
- Where excess carbonate NP available, pH drop does not occur
- Metal solubility/mobility largely a function of pH
- Secondary mineral precipitation/ dissolution/ sorption important control on concentrations
- PHREEQC and Geochemists Workbench modeling to compare field/cells

GoldSim model

Basic calculations occurring in each time step

- Flow
- Loading
- Mass balance
- Acidity generated/Neutralization consumed
- · Corrections for non-ideality
- pH determined (also as function of Pco₂)
- Secondary precipitation
- pH-dependent solubility
- Effects of Sorption
- "Equilibrated" water quality transferred

Klohn Crippen Berger

Model Structure

<image><complex-block>

Solubility calculations

- Model based on field cells rates which have not yet fully evolved
- Model simplifies reactions (no complexation etc)
- Metal solubility tied to pH/solubility trends based on field observations (cells/piles/full scale)

Kiohn Crippen Ber

 Mass transfer occurs between components without reaction

The importance of understanding the hydrology

- Internal hydrology of WRD and TSF very important to understanding water quality
- Seasonality and flush vs matrix storage must be included to simulate field observations especially for WRD's

Klohn Crippen Berger

Limitations

- Only as good as the available data
- Provides broad ranges of expected quality
- Each component consist of only a few units/homogenization
- Lacks spatial variability
- Answers will not correlate precisely to geochemical models since precise speciation is not included.
- Significant initial effort to scale correctly

Klohn Crippen Berger

Klohn Crippen Berg

Advantages

- Provides an integrated water quality with the mine water balance
- Models can independently include water balance components for integrated cause-effect relationships
- As relevant data is gathered and processed, model accuracy should improve
- Predictions should improve as better understanding of the correlation between on-site activities and observed concentrations is obtained

Klohn Crippen Berger

Summary

- Models have been provided as tools to mine users
- Impacts of changes in management strategy can be quickly and easily evaluated.
- Models can be used for on-site training so that responsible persons at the mine site can understand the key processes and the relative importance of each data type in a monitoring program.

