Mine Water Remediation at Large-Scale Metal Mines: Balancing Near-Term Expenditures for Source Control with Long-Term Expenditures for Collection and Treatment

M. Nelson, G. Hazen, S. Fundingsland
CDM Inc.

Remediation goals
- Compliance with water quality standards
- Protection of human health and environment
- Achieve post remediation land uses

Always limited capital
- Common disagreement among stakeholders
 - Governmental agencies responsible for environmental protection
 - Mining corporations and other responsible parties
 - Other stakeholders

In mature regulatory environment of US, walk-away solutions are seldom achieved...

Remedies often include near-term expenditures for source control...

What is an Appropriate Balance?

Source Controls
- Characterization
- Consolidation
- Covers

Water Management
- Collection
- Conveyance
- Treatment

Near-term Expenditures

Long-term Expenditures

...and long-term expenditures to provide for water management!

© by Authors and IMWA
Why do we care?

- Facilitate better decisions
- Prioritize limited funding
- Understand goals and perspectives of stakeholders

Who should care?

- Mining Company Representatives
- Governmental Representatives
- Researchers
- Consultants

Potential Means to Achieve an Appropriate Balance

Economic Evaluations:
- Cost estimates of potential remedial strategies
- Present value analyses evaluating expected short-term and long-term expenditures
- Cost estimate risk analysis

Other Considerations:
- Human health and ecological risk
- Uncertainty in future regulations
- Remedy performance risks
- Sustainability considerations
- Funding considerations

Engineering Cost Estimates of Potential Remedial Strategies

- Generally completed for potential remedial strategies
- Short-term expenditures
 - Earth moving
 - Low permeability covers
 - Construction of major treatment infrastructure
- Long-term expenditures
 - Mine water management, treatment
 - Remedy maintenance

Present Value (PV) Analysis

- Means to understand economic efficiency of potential remedial strategies
- Economic efficiency is defined as:
 - “expenditures by either private industry or government agencies that manage the environmental liability associated with mine water in an efficient manner”
- Established method that estimates the value in current dollars of a series of future expenditures

Components of PV Analysis

- Defined series of future expenditures
- Discount rate
 - accounts for the productivity of capital if applied to alternative uses
- Period of analysis
- Facilitates comparison of strategies with varying short-term versus long-term expenditures
Example PV Calculation for Long-term Water Treatment

- Estimate assumes 30 years of water treatment
- Annual inflows w/ avg. precip: 400,000,000 liters
- Treatment cost: $3.00 per 1000 liters
- Annual Treatment Cost (present dollars): $1,200,000.00
- Capital Cost: $5,000,000
- Discount Rate: 3.00%
- Total PV: $44,119,000

<table>
<thead>
<tr>
<th>Year</th>
<th>Capital Cost</th>
<th>Treatment Cost</th>
<th>Total Cost</th>
<th>Discount Rate</th>
<th>Present Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$5,000,000</td>
<td>$1,200,000</td>
<td>$6,200,000</td>
<td>1.00000</td>
<td>$6,200,000</td>
</tr>
<tr>
<td>1</td>
<td>$1,200,000</td>
<td>$1,200,000</td>
<td>$2,400,000</td>
<td>0.97087</td>
<td>$2,321,009</td>
</tr>
<tr>
<td>2</td>
<td>$1,200,000</td>
<td>$1,200,000</td>
<td>$2,400,000</td>
<td>0.94232</td>
<td>$2,253,816</td>
</tr>
<tr>
<td>3</td>
<td>$1,200,000</td>
<td>$1,200,000</td>
<td>$2,400,000</td>
<td>0.91493</td>
<td>$2,190,202</td>
</tr>
<tr>
<td>4</td>
<td>$1,200,000</td>
<td>$1,200,000</td>
<td>$2,400,000</td>
<td>0.88897</td>
<td>$2,130,069</td>
</tr>
<tr>
<td>5</td>
<td>$1,200,000</td>
<td>$1,200,000</td>
<td>$2,400,000</td>
<td>0.86384</td>
<td>$2,072,885</td>
</tr>
<tr>
<td>6</td>
<td>$1,200,000</td>
<td>$1,200,000</td>
<td>$2,400,000</td>
<td>0.83943</td>
<td>$2,018,119</td>
</tr>
<tr>
<td>7</td>
<td>$1,200,000</td>
<td>$1,200,000</td>
<td>$2,400,000</td>
<td>0.81563</td>
<td>$1,965,644</td>
</tr>
<tr>
<td>8</td>
<td>$1,200,000</td>
<td>$1,200,000</td>
<td>$2,400,000</td>
<td>0.79240</td>
<td>$1,915,324</td>
</tr>
<tr>
<td>9</td>
<td>$1,200,000</td>
<td>$1,200,000</td>
<td>$2,400,000</td>
<td>0.76971</td>
<td>$1,866,158</td>
</tr>
<tr>
<td>10</td>
<td>$1,200,000</td>
<td>$1,200,000</td>
<td>$2,400,000</td>
<td>0.74763</td>
<td>$1,818,029</td>
</tr>
<tr>
<td>11</td>
<td>$1,200,000</td>
<td>$1,200,000</td>
<td>$2,400,000</td>
<td>0.72611</td>
<td>$1,770,920</td>
</tr>
<tr>
<td>12</td>
<td>$1,200,000</td>
<td>$1,200,000</td>
<td>$2,400,000</td>
<td>0.70523</td>
<td>$1,724,820</td>
</tr>
<tr>
<td>13</td>
<td>$1,200,000</td>
<td>$1,200,000</td>
<td>$2,400,000</td>
<td>0.68492</td>
<td>$1,679,703</td>
</tr>
<tr>
<td>14</td>
<td>$1,200,000</td>
<td>$1,200,000</td>
<td>$2,400,000</td>
<td>0.66520</td>
<td>$1,635,545</td>
</tr>
<tr>
<td>15</td>
<td>$1,200,000</td>
<td>$1,200,000</td>
<td>$2,400,000</td>
<td>0.64599</td>
<td>$1,592,350</td>
</tr>
<tr>
<td>16</td>
<td>$1,200,000</td>
<td>$1,200,000</td>
<td>$2,400,000</td>
<td>0.62721</td>
<td>$1,550,126</td>
</tr>
<tr>
<td>17</td>
<td>$1,200,000</td>
<td>$1,200,000</td>
<td>$2,400,000</td>
<td>0.60872</td>
<td>$1,509,066</td>
</tr>
<tr>
<td>18</td>
<td>$1,200,000</td>
<td>$1,200,000</td>
<td>$2,400,000</td>
<td>0.59043</td>
<td>$1,469,161</td>
</tr>
<tr>
<td>19</td>
<td>$1,200,000</td>
<td>$1,200,000</td>
<td>$2,400,000</td>
<td>0.57231</td>
<td>$1,430,310</td>
</tr>
<tr>
<td>20</td>
<td>$1,200,000</td>
<td>$1,200,000</td>
<td>$2,400,000</td>
<td>0.55433</td>
<td>$1,392,516</td>
</tr>
<tr>
<td>21</td>
<td>$1,200,000</td>
<td>$1,200,000</td>
<td>$2,400,000</td>
<td>0.53645</td>
<td>$1,355,758</td>
</tr>
<tr>
<td>22</td>
<td>$1,200,000</td>
<td>$1,200,000</td>
<td>$2,400,000</td>
<td>0.51866</td>
<td>$1,319,003</td>
</tr>
<tr>
<td>23</td>
<td>$1,200,000</td>
<td>$1,200,000</td>
<td>$2,400,000</td>
<td>0.50105</td>
<td>$1,282,242</td>
</tr>
<tr>
<td>24</td>
<td>$1,200,000</td>
<td>$1,200,000</td>
<td>$2,400,000</td>
<td>0.48351</td>
<td>$1,245,454</td>
</tr>
<tr>
<td>25</td>
<td>$1,200,000</td>
<td>$1,200,000</td>
<td>$2,400,000</td>
<td>0.46605</td>
<td>$1,208,624</td>
</tr>
<tr>
<td>26</td>
<td>$1,200,000</td>
<td>$1,200,000</td>
<td>$2,400,000</td>
<td>0.44865</td>
<td>$1,171,721</td>
</tr>
<tr>
<td>27</td>
<td>$1,200,000</td>
<td>$1,200,000</td>
<td>$2,400,000</td>
<td>0.43129</td>
<td>$1,134,710</td>
</tr>
<tr>
<td>28</td>
<td>$1,200,000</td>
<td>$1,200,000</td>
<td>$2,400,000</td>
<td>0.41397</td>
<td>$1,097,564</td>
</tr>
<tr>
<td>29</td>
<td>$1,200,000</td>
<td>$1,200,000</td>
<td>$2,400,000</td>
<td>0.39668</td>
<td>$1,060,258</td>
</tr>
<tr>
<td>30</td>
<td>$1,200,000</td>
<td>$1,200,000</td>
<td>$2,400,000</td>
<td>0.37941</td>
<td>$1,022,844</td>
</tr>
</tbody>
</table>

Cost Estimate Risk Analysis

- Unfortunately, during feasibility study or scoping stages, cost estimates are tenuous
 - Ultimate design scope may be unknown
 - Design quantities?
 - Design details?
 - Implementation schedule may be unknown
 - Diesel fuel cost?
 - Cover cost?
- Cost estimate risk analysis uses Monte Carlo simulation to address these issues

Monte Carlo Simulation in Cost Estimate Risk Analysis

- Propagate uncertainties associated with each input through the cost estimate
- Provide a probabilistic estimate of cost risk for a given remedial strategy
- Define specific probability distribution for various inputs to cost estimate
 - Historical costs adjusted for inflation
 - Range of uncertainty in volume estimates
 - Professional judgment etc.

Monte Carlo Simulation in Cost Estimate Risk Analysis (continued)

- Facilitates cost comparisons for various strategies using a standard probability level
- Identifies critical elements that are “drivers” to the overall cost risk
- Prepares decision-makers for potential costs at later design stages
- Facilitates better decisions

Other considerations for effective remediation decisions

- Clearly, cost is not the only issue
- Other issues may include
 - Mitigation of other human health or ecological risks
 - Uncertainty in future regulations
 - Remedy performance risks
 - Sustainability considerations
 - Funding considerations

Alternative remediation strategy that exceeds $44 million total cost would be less economically efficient than this strategy (assuming equal environmental protection)

Provides a basis for comparison of various approaches (e.g. source control strategy involving extensive earthwork, versus treatment strategy)

Example of present value estimate at various discount rates

<table>
<thead>
<tr>
<th>Annual Mine Water Treatment Volume (liters)</th>
<th>Mine Water Treatment Cost ($ per 1000 liters)</th>
<th>Initial Treatment Plant Capital Cost</th>
<th>Discount Rate</th>
<th>Present Value of Mine Water Treatment 100 year duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 million</td>
<td>$3.00</td>
<td>$5 million</td>
<td>7 percent</td>
<td>$23.5 million</td>
</tr>
<tr>
<td>400 million</td>
<td>$3.00</td>
<td>$5 million</td>
<td>5 percent</td>
<td>$30.8 million</td>
</tr>
<tr>
<td>400 million</td>
<td>$3.00</td>
<td>$5 million</td>
<td>3 percent</td>
<td>$44.1 million</td>
</tr>
</tbody>
</table>

Other issues may include

- Mitigation of other human health or ecological risks
- Uncertainty in future regulations
- Remedy performance risks
- Sustainability considerations
- Funding considerations

Priorities of these issues in mine remediation and closure decisions may be viewed differently by various stakeholders.
Mitigation of other human health or ecological risks

- Other risks may be present...
 - Incidental ingestion, inhalation
 - Lead risks at Pb-Zn-Ag deposits
 - Arsenic risks at Au or U-V deposits
 - Wind dispersion
 - Tailings
 - Dust
 - Asbestos

May require source control remedy regardless of mine water cost analysis

Uncertainty in Future Regulations

- Problematic issue for mine water remediation in US
- Surface water standards may change every three years in Triennial Review
- Most problematic for industry in US
 - Pollutant discharge permits may change each 5 years
- When considering long-term treatment, discharge standards that will apply in future are strictly unknown
- Remedies focused on water treatment may be more flexible

Remedy Performance Risks

- How well will source controls work?
 - What if they don’t work as well as expected?
- Source control remedies particularly subject to this risk
 - High near-term expenditures
- Treatment remedies less subject to this risk
 - Lower near-term expenditure

Funding Sources for Mine Remediation

- May drive decisions for some stakeholders
- Private industry
 - Competing needs/investments
 - Future liability
- Government funding
 - Types of funding mechanisms
 - Timing and sourcing
 - Risk of loosing future govt. funding sources
 - Risk of bankruptcy of regulated mining companies
- Can we influence future legislation?

Conclusions

- Mine water mitigation at large-scale metal mines technically challenging and expensive
- Need to achieve an appropriate balance between near-term and long-term expenditures
 - Meet the requirements of environmental laws
 - Protect human health and environment
 - Manage level of capital expenditures
 - Private mining corporations
 - Government agencies
 - Efficiently mitigate legacy sites
 - Facilitate continued mineral production and environmental protection in future