

Nutritional classification of microorganisms

All living organisms need sources of carbon, energy and electrons to carry out their metabolic activities. Bacteria have also been classified based on their method(s) used to obtain these three components - <u>carbon, energy and electrons</u>:

•AUTOTROPHS obtain their carbon from carbon dioxide

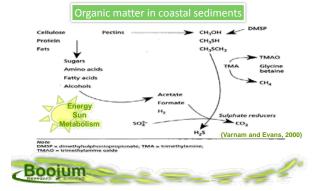
•HETEROTROPHS need pre-made organic compounds as carbon source

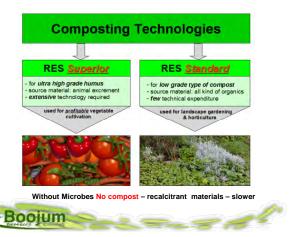
•PHOTOTROPHS are organisms that utilize light as a source of energy

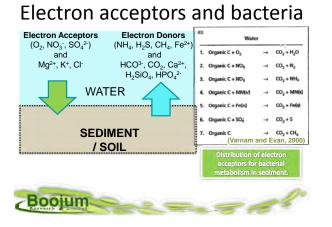
•CHEMOTROPHS obtain energy by oxidation of inorganic or organic compounds.

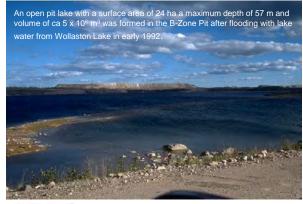
•ORGANOTROPHS obtain their electrons from organic compounds

•LITHOTROPHS (literally rock eaters) obtain electrons from inorganic compounds

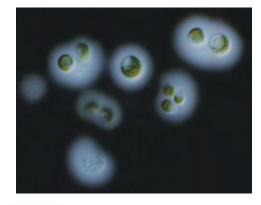

Nutritional classification of microorganisms


Major nutritional types of prokaryotes


Nutritional Type		Carbon Source	Electron Source	Examples
Photoautotrophic lithotrophs	Light	CO2	Inorganic (H2O or H2S)	Cyanobacteria (e.g. <i>Oscillatoria</i>), some
intiotropiis				purple and green
Dhatahatawatwa shia	Light	Organic	Organic compounds	bacteria
Photoheterotrophic organotrophs	Light	compounds		Some purple (e.g. Rhodobacter) and green bacteria
Chemoautotrophic	Rocks or	CO2		Bacteria (e.g.
lithotrophs	minerals			Nitrosomonas) and many archaea
Chemoheterotrophic organotrophs	Organic compounds	Organic compounds	Organic compounds	Most bacteria (e.g. Escherichia coli) some

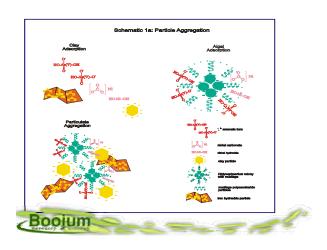


Anaerobic degradation-metabolism



Boojum

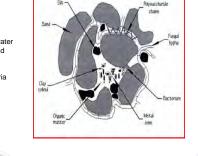
Boojum



Boojum

Table 1: Chemistry and concentration changes 1993-2001

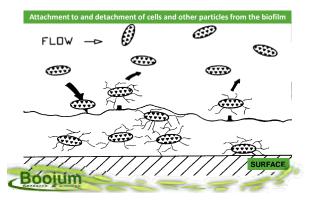
Parameter	Mean Concentration (mg/L)		Decrease (-) / Increase (+)
	1993	2001	
HCO3-	13.1	31.8	14 2 %
Conductivity (µs/cm)	53.4	87.5	64%
Na	1.8	2.4	34%
AI	1	0.008	-99%
As	0.28	0.019	-93%
CI	1.8	0.72	-59%
Fe	0.75	0.29	-61%
Ni	0.27	0.19	-31%
Ra ²²⁶ -total (Bq/L)	0.143	0.018	-87%
U (total)	0.026	0.01	-62%

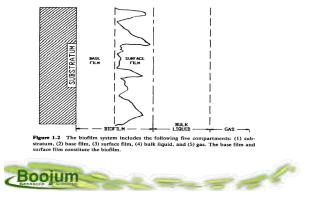


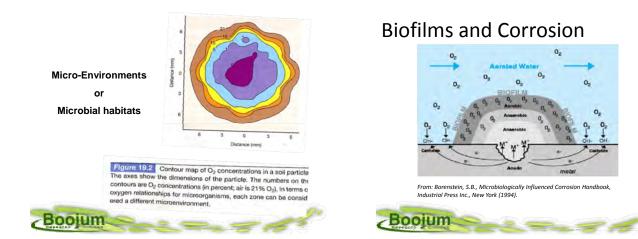
The structure of a soil particle

Ideal soil 25 % air, 25 % water 45% minerals and silica and 5 % organic matter Fungi and bacteria hold the particle together

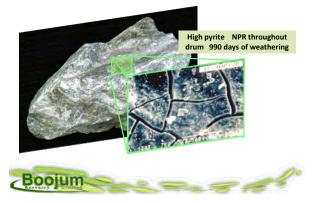
Boojum


Rocks are the parent material of soils

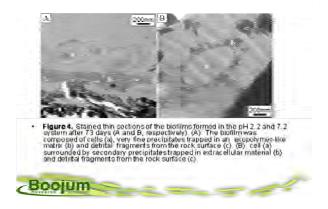

Soil formation is part of the geologic cycle and soil characteristics are influenced by parent material, climate, topography, weathering, and the amount of time a particular soil has had to develop.



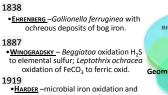
Biofilm formation



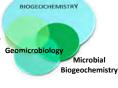
The basic structure of a biofilm



Mineral Surfaces

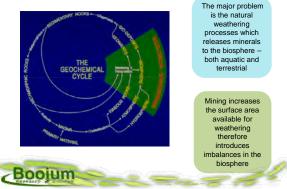


Biofilm – additons of NPR


Geomicrobiology – pre-biofilms

 <u>HARDER</u> – microbial iron oxidation and precipitation in iron sedimentary deposits.

• STUTZER (1911); VERNADSKY (1908-1922)


...

Microbial Ecology

Where does bio-mineralization take place? Answer: in sediments

Weathering /hydro-chemical cycles

•Chemical Weathering is the major process controlling the global hydro-chemical cycle of elements.

•Water is the reactant and the transporting agent of dissolved and particulate components from land to sea.

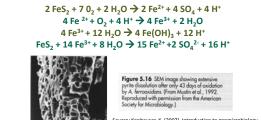
Geochemical Cycles

CLASSICAL GEOCHEMICAL MATERIAL BALANCE (GOLDSCHMIDT, 1933)

- H * balance \rightarrow interaction between of igneous rocks with volatile substances.

	VOLATILE SUBSTANCES			
SILICATES CARBONATES OXIDES	CO ₂ H ₂ 0 SO ₂ HCI	pH ≈ 8 pε≈12	pO ₂ = 0.2 pCO ₂ = 0.0003	CARBONATES SILICATES

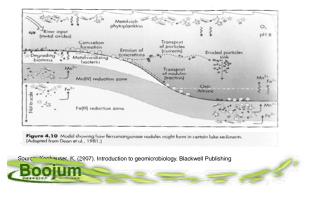
Weathering


Climate is the main driver of the weathering process – "the production of metals from the rocks" - either as:

MICROBIAL WEATHERING

Pyrite ⇒ A. ferrooxidans ⇒ ARD/AMD

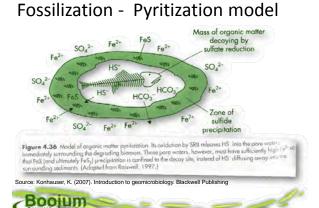
Source: Konhauser, K. (2007). Introduction to geomicrobiology. Blackwell Publishing


Biologically-induced bio-mineralization

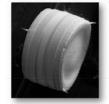
Minerals are formed as byproduct of the cell's metabolic activity or through its interactions with the surrounding aqueous environment.

Ferromanganese nodules

Booium

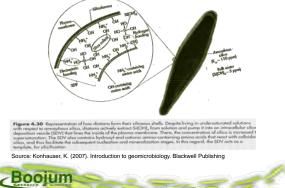


Biologically -controlled bio-mineralization


Completely regulated by the organism, allowing the organism to precipitate minerals that serve some physiological purpose.

> ✓ Magnetite ✓ Greigite ✓ Calcite ✓ Amorphous Silica

Biologically-induced bio-mineralization


Booium

Bio-mineralization in Diatoms (Bio-silica) \http://www.biologie.uni-regensburg.de/Biochemie/Sumper/startseite.html

Bio-mineralization of Pyrite (Ammonite Fossil) Alden,Erie Co., NY http://www.nysm.nysed.gov/nysam/recentaq/18917.ht

Amorphous Silica

BIOLOGICALLY-CONTROLLED BIO-MINERALIZATION

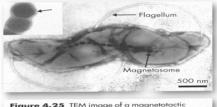
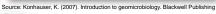
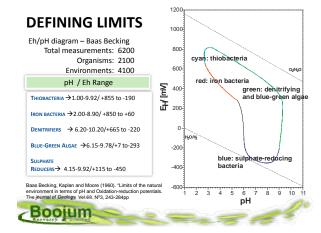
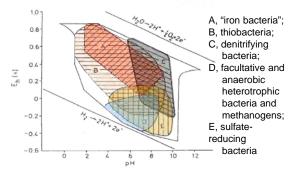
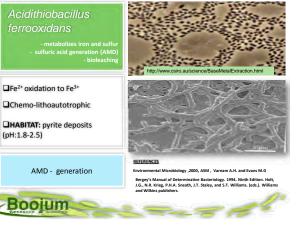



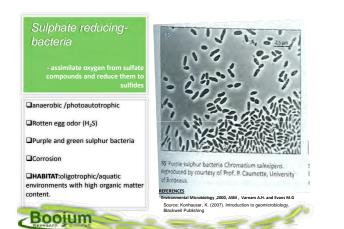
Figure 4.25 TEM image of a magnetotactic bacterium, designated strain MV-4, grown in pure culture. Cells of this strain produce a single chain of magnetite crystals that longitudinally traverse the cell. Inset shows close-up of the magnetosome membrane (arrow) that surrounds each individual particle. (Courtesy of Dennis Bazylinski.)



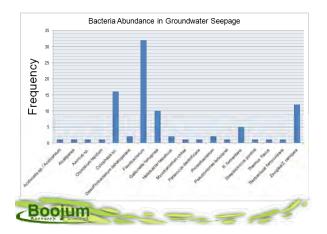
Scanning electron image of a gold-encrusted Biofilm on a gold flake panned from soil

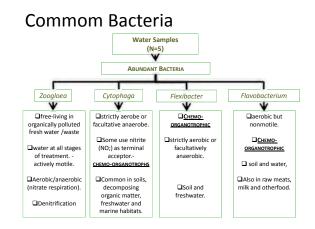

Scanning electron image of a Gold flake panned from soil Overlaying the Tomakin Park Gold mine

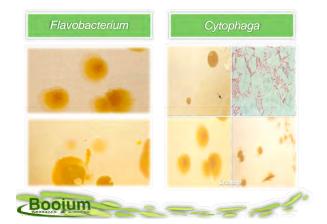


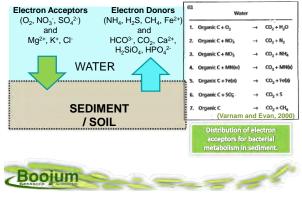

Environmental Limits of Eh and pH for aquatic Bacteria

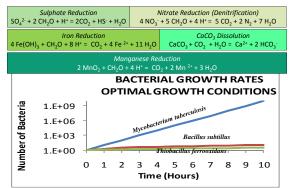
Boojum

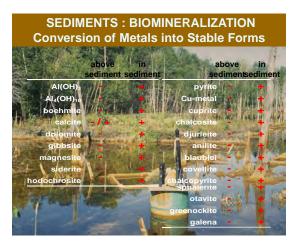





BACTERIAL CONSORTIA IN ACID MINE GROUNDWATER SEEPAGE


Bergey's Manual of Determinative Bacteriology. 1994. Ninth Edition. Holt, J.G., N.R. Krieg, P.H.A. Sneath, J.T. Staley, and S.T. Williams. (eds.). Williams and Wilkins publishers. ns M.G


Electron acceptors and bacteria


Boojum

Alkalinity increase

<u>___</u>

Ecological engineering – effects of NPR and carbon additions

Floating cover removes oxygen below

MIT Technology Review 1990

