DRINKING WATER FROM MINE WATER USING THE HiPRO® PROCESS - OPTIMUM COAL MINE WATER RECLAMATION PLANT

Kathy Karakatsanis1 and Vik Cogho2
1 Keyplan (Pty) Ltd, Johannesburg, Gauteng, South Africa
2 Optimum Coal Mine, Department Environment and Projects, Pullenshope, Mpumalanga, South Africa

OUTLINE

• Background
• Mine Water Reclamation Project
 – Mine Water Collection and Transfer
 – Mine Water Treatment Plant
 – Treated Water Collection and Distribution
 – Waste Disposal
• Conclusion
 – Recovery
 – Waste Production
 – Operating Costs

BACKGROUND

• Optimum Coal Mine

BACKGROUND

• Water Management Scheme

BACKGROUND

• Selection of Water Treatment Technology
 – >98% Water Recovery
 – Minimum Brine Waste Generation
 – Potentially Useful Solid By-products
 – High Quality Drinking Water (SANS highest standard)
 – Large-scale Commercially Proven Technology

HiPRO® PROCESS

(High Recovery Precipitation Reverse Osmosis Process)
MINE WATER RECLAMATION PROJECT

• Mine Water Collection and Transfer

MINE WATER RECLAMATION PROJECT

• Mine Water Treatment Plant

MINE WATER RECLAMATION PROJECT

• Mine Water Quality

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Median</th>
<th>50th Percentile</th>
<th>95th Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td></td>
<td>7.0</td>
<td>8.5</td>
</tr>
<tr>
<td>Conductivity (mS/m)</td>
<td></td>
<td>525</td>
<td>635</td>
</tr>
<tr>
<td>TDS (mg/l)</td>
<td></td>
<td>5220</td>
<td>6300</td>
</tr>
<tr>
<td>Sodium (mg/l)</td>
<td></td>
<td>110</td>
<td>140</td>
</tr>
<tr>
<td>Potassium (mg/l)</td>
<td></td>
<td>50</td>
<td>85</td>
</tr>
<tr>
<td>Calcium (mg/l)</td>
<td></td>
<td>550</td>
<td>595</td>
</tr>
<tr>
<td>Magnesium (mg/l)</td>
<td></td>
<td>570</td>
<td>750</td>
</tr>
<tr>
<td>Chloride (mg/l)</td>
<td></td>
<td>35</td>
<td>45</td>
</tr>
<tr>
<td>Sulphate (mg/l)</td>
<td></td>
<td>3500</td>
<td>4400</td>
</tr>
<tr>
<td>Alkalinity (mg/l)</td>
<td></td>
<td>340</td>
<td>465</td>
</tr>
<tr>
<td>Fluoride (mg/l)</td>
<td></td>
<td>0.5</td>
<td>0.8</td>
</tr>
<tr>
<td>Nitrate (mg/l)</td>
<td></td>
<td>0.2</td>
<td>1.2</td>
</tr>
<tr>
<td>Ammonia (mg/l)</td>
<td></td>
<td>0.4</td>
<td>1.7</td>
</tr>
<tr>
<td>Iron (mg/l)</td>
<td></td>
<td>0.01</td>
<td>0.6</td>
</tr>
<tr>
<td>Aluminium (mg/l)</td>
<td></td>
<td>0.02</td>
<td>0.5</td>
</tr>
<tr>
<td>Manganese (mg/l)</td>
<td></td>
<td>0.2</td>
<td>2.5</td>
</tr>
<tr>
<td>Barium (mg/l)</td>
<td></td>
<td>0.02</td>
<td>0.03</td>
</tr>
<tr>
<td>Silica (mg/l)</td>
<td></td>
<td>2.3</td>
<td>5.8</td>
</tr>
<tr>
<td>Strontium (mg/l)</td>
<td></td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

MINE WATER RECLAMATION PROJECT

• Mine Water Treatment Plant – Pretreatment

 - Stage 1
 • Feed - Neutral pH, Low Mn & Fe
 • No Neutralisation
 • Ozone – oxidation & disinfection
 • Clarifiers – solids settling
 • Sand Filters - polishing
 - Stage 2 & 3
 • RO reject feed – supersaturated
 • Precipitation reactors – high pH with lime
 • Hydrocyclones – solids classification
 • Clarifiers – solids settling
MINE WATER RECLAMATION PROJECT

Mine Water Treatment Plant – Ultrafiltration
- Solids removal
 - Total of 11 UF Skids
 - Stage 1 – 7 Skids
 - Stage 2 – 3 Skids
 - Stage 3 – 1 Skid
- Dead-end mode operation
- Automatically and intermittently backwashed
- Backwash water collected in Plant Sump and retreated
- Antiscalant dosing

Stage 1 – 7 Skids
- Dead-end mode operation
- Automatically and intermittently backwashed
- Backwash water collected in Plant Sump and retreated
- Antiscalant dosing

Stage 2 – 3 Skids
- Dead-end mode operation
- Automatically and intermittently backwashed
- Backwash water collected in Plant Sump and retreated
- Antiscalant dosing

Stage 3 – 1 Skid
- Dead-end mode operation
- Automatically and intermittently backwashed
- Backwash water collected in Plant Sump and retreated
- Antiscalant dosing

MINE WATER RECLAMATION PROJECT

Mine Water Treatment Plant – Reverse Osmosis
- Dissolved Salts removal
- Total of 7 UF Skids
 - Stage 1 – 4 Skids 70% Recovery 13 bar
 - Stage 2 – 2 Skids 65% Recovery 18 bar
 - Stage 3 – 1 Skid 60% Recovery 30 bar
- Permeate – to potable or excess water distribution
- Reject – to next stage or brine pond

Stage 1 – 4 Skids
- Dead-end mode operation
- Automatically and intermittently backwashed
- Backwash water collected in Plant Sump and retreated
- Antiscalant dosing

Stage 2 – 2 Skids
- Dead-end mode operation
- Automatically and intermittently backwashed
- Backwash water collected in Plant Sump and retreated
- Antiscalant dosing

Stage 3 – 1 Skid
- Dead-end mode operation
- Automatically and intermittently backwashed
- Backwash water collected in Plant Sump and retreated
- Antiscalant dosing

MINE WATER RECLAMATION PROJECT

Treated Water Collection and Distribution
- Potable Water
 - Stabilised and Disinfected RO Permeate
 - Guaranteed <450mg/l TDs and SANS Class 0 compliant
 - Hendrina Municipality
 - Current capacity 5ML/day
- Excess Water
 - RO Permeate
 - Guaranteed <450mg/l TDs and SANS Class 0 compliant
 - Released to clean water canal, upstream of mine workings
 - Balance of 15ML/day not assigned to potable water

Waste Disposal
- Mixed Sludge
 - Transferred to lined Sludge Pond with large settling capacity
 - Supernatant is returned to WTP for further treatment
 - Solids content 10-15% (m/v)
 - Primarily Mg(OH)$_2$ and CaSO$_4$ phases

- Gypsum Sludge
 - Dewatered by means of a Vacuum Belt Filter
 - Filtrate is returned to WTP for further treatment
 - Dewatered Gypsum is stockpiled with prospect of sale to potential users

- Brine
 - Stage 3 RO reject ~30 000mg/l TDS
 - Brine Pond - evaporation
CONCLUSION

• Recovery
 – 98% Potable Water Recovery

• Waste Production
 – Mixed Sludge
 • 2.34 m³/h water AND 3.52 t/h solids
 – Gypsum Sludge
 • 0.55 m³/h water AND 1.28 t/h solids
 – Brine
 • 6.1 m³/h water
 • ~30 000 mg/l salinity

• Operating Costs (March 2010) – 15ML/day
 – Variable: ~R5.00/m³ (excl. Power)
 – Fixed: ~R2.50/m³

IMWA 2010 Sydney, Nova Scotia | “Mine Water & Innovative Thinking”

© by Authors and IMWA