Treatments of Mine Runoff TSS Using Ponds & Optimizing Flocculant Addition to Ensure Discharge Compliance

Reason for the Presentation

1. Reviewed available BMP guidelines → absence of predictive methodology to address regulatory discharge compliance for TSS, turbidity, flocculant-induced toxicity.

2. Proposal → develop procedures to supplement existing BMP to estimate: pond discharge quality for TSS, Turbidity, Toxicity, and downstream impact for TSS, Turbidity, Toxicity, based on site specific soil particle size distributions of upsoil soils eroded into the pond.

3. Cost savings may be realized by constructing only the necessary works to achieve discharge compliance and avoid future costly retrofitting and regulatory legal costs, and subsequent fines in some jurisdictions.

Balancing Erosion Control and Ponds

1. Maximize erosion control? Why dam up the runoff?

4. Estimate Soil Loss – use RUSLE or other methods to estimate TSS into pond.

A Pond Design Guideline Methodology Should Include Discharge Quality Predictive Testing

Testing methods should ideally include:

1. Testing methods which determine the need for settling aids.

2. Testing methods which avoid over/under-designing the pond size.

3. Guidance on installing the optimal flocculant system. (based on the potential toxicity of the chosen flocculants).

4. Minimizing risk of exceeding regulatory pond discharge standards, downstream water quality standards and avoiding flocculant-induced toxicity.

What Testing should be Included in a Methodology?

1. Major cause of excessive sediment to receiving waters is: abundant un-settleable fine particles in the soils ("fines").

2. Problematic soils cause discharge problems based on:
 - Elevated TSS of fine particle fraction into the pond.
 - The size "split" the pond is capable of achieving at various inflow rates is too coarse.
 - The critical settling particle size prevents the pond capturing minus 2 micron particles, without using settling aids.

3. Must be based on the particle size distribution of the soils so that the pond discharge TSS quality/turbidity can be estimated.

Current Regulatory Requirements for Pond Design

1. British Columbia Canada: e.g. 0.0001 cubic metre/s/1.0 square metre of pond area (at 25°C), which removes 10 micron and larger particles, for the 10-year, 24-hour rainfall event. Coal mines to achieve 50 mg/L TSS; Metal mines 35 mg/L.

2. Some US jurisdictions require pond sizing in terms of pond volume and geographical location.

3. Maryland, 0.5 inches/acre, or a pond size of 1,300 yd^3/acre drained.

4. Removal efficiency of the TSS input (e.g. remove 95% of pond input TSS).

5. These methods do not address pond discharge quality - yet these jurisdictions may specify permit requirements for pond discharge TSS concentration, toxicity and downstream quality.

© by Authors and IMWA
Estimate Size Cut

Particle Separation Size = \sqrt{\frac{(Q/A)(18\mu/g)(s-1)}}

Pond Area A = \frac{Q}{V}

Canadian Metal Mining Regulation:
discharge quality 35 mg/L TSS Grab Sample, 15 mg/L TSS, Monthly Average.

Grain Size Analysis of the Upslope Soils

1. Assume particle size distribution for the TSS, mg/L into the pond is similar to the upslope soil particle size distribution.
2. If size cut in pond is 10\mu at a particular inflow rate, 15% of the minus 10\mu particles exit the pond.

Estimating Soil Loss by RUSLE to Calculate TSS into Pond

\[A = R \times K \times (LS) \times C \times P \times (SOIL\ LOSS + Q \rightarrow TSS, \ mg/L) \]

Where:
- A = Average annual soil loss in tons per acre per year
- R = Rainfall/runoff erosivity
- K = Soil erodibility (closely related to grain size analysis)
- LS = Hillslope length and steepness
- C = Cover-management
- P = Support practice

R & Q is Runoff rate

Soil Loss + Inflow Rate Q

Estimating How Much Soil Exits the Pond

\[TSS, \ mg/L \ and \ Q, \ pond \ inflow \ rate \]

Particle separation size, \mu micron

Estimating Pond Discharge TSS

\[\text{Particle separation size, } \mu \text{ micron} \]

\[X_{\mu} = \sqrt{\frac{(Q/A)(18\mu/g)(s-1)}} \]

\[\% \text{ Passing at the Pond Size Cut } X_{\mu} \text{ at inflow rate } Q \]

\[Y_{\mu} \times 1000 \text{ mg/L} \leq 35 \text{ mg/L} \rightarrow Y \leq 3.5\% 10\mu \]

Conclusion:
Pond size to remove 10 micron is a practical limit.
1. Residual TSS corresponds to un-settatable particle sizes in soils.

2. Calibrate settling tests to the sediment pond.

Confirmation of Expected Pond Discharge Quality

1. Residual TSS, caused by Brownian Motion, is:
 - 30 mins: 500 mg/L
 - 60 mins: 327 mg/L
 - 120 mins: 97 mg/L
 - 240 mins: 48 mg/L
 - 480 mins: < 9 mg/L
 - 1440 mins: < 9 mg/L

If Residual TSS > 35 mg/L → perform flocculant testing.

Also use the optimum flocculant dosage in a 40 litre suspension, and allow to clarify, then use the supernatant to perform a bioassay on Rainbow Trout and Ceriodaphnia dubia.

Linking Settling Tests to the Sediment Pond

- Settling rate particle \(x \mu \) settles \(H \) cm in \(T \) secs.
- \(Q \) cubic metre /sec = \(\frac{H_1}{T_1} = \frac{H_2}{T_2} \)
- Measure settling rate, TSS, Turbidity
- Discharge also has same TSS, Turbidity and contains \(x \mu \)

Using Low Toxicity Flocculants

(a) Flocculant addition

(b) Entry point into pond

Conditioning time between (a) and (b) should duplicate the settling test optimum conditioning time, to provide adequate mixing to avoid residual flocculant in pond water column and pond discharge.

Basic Flocculant Addition System - Low Toxicity

- Belt feeder
- Flocculant powder

“Cadillac” Flocculant Addition System - High Toxicity Flocculants

Higher toxicity risk flocculants → more precise addition strategy is required resulting in a more elaborate, costly system.

Flocculant Testing

1. Should we only test low toxicity flocculants?
2. Is there a methodology to assess what are low toxicity flocculants?
3. Suggested methodology to select low toxicity flocculants:
 - Typical Low Toxicity flocculant categories:
 - Anionic flocculant (less effective)
 - Neutral flocculant (less effective)
1. Higher Toxicity flocculants: Cationoc flocculant (More effective) Cationic/anionic flocculant Pair (More effective)
2. Fish gill assumed to be negatively charged (a result of evolution?)
3. Particulate in natural waters is typically negatively charged.
4. Predominance of particle negativity due generally to the preferential adsorption of OH⁻.

Guideline for Selection Flocculants
1. A "just pass" 96HrLC50 = 1.0 Toxic Unit, by definition.
2. Flocculant addition dosage = \(C_{\text{floc}} \) mg/L
3. Flocculant 96 Hour LC50 concentration = \(C_{\text{floc}} \) mg/L
4. If \(\frac{[C_{\text{flocadd}}]}{[C_{\text{floc}}]} \geq 1.0 \) consider this potentially a high risk to generate toxicity.
5. If \(\frac{[C_{\text{flocadd}}]}{[C_{\text{floc}}]} \leq 0.25 \) consider this a low risk.

What if the only Effective Flocculants Have "High Risk" Toxicity?
1. Attempt to avoid high toxicity flocculants, if possible.
2. If this is unavoidable, operating the pond becomes more challenging for the operator.
3. Special provisions are required to avoid generating "residual" flocculant in the pond discharge.
4. May require installing the "Cadillac" flocculant addition system + more.

Causes of Toxicity in the Discharge?
1. What happens when excess flocculant is added to the runoff/TSS ?
2. Excess flocculant implies too much flocculant and not enough particles to “consume” the excess.
3. This will result in residual flocculant in the pond discharge.
4. Insufficient particle surface area to adsorb the excess flocculant.
5. Flocculant stays in the pond supernatant.

Causes of Toxicity in the Pond Discharge – Inadequate Conditioning Time?
1. The excess flocculant is not removed from the pond supernatant to settling particles.
2. Polymer transfer mechanism from fluid phase to TSS particles also requires efficient mixing (not present in the pond).
3. Inadequate mixing conditions and insufficient conditioning time prior to runoff entering the pond may also lead to residual flocculant.

Pond Discharge Quality – TSS and Impact on Receiving Water, British Columbia Example

\[
\frac{Q}{Q_s} = D, \quad \text{Pond Discharge Dilution}
\]

\[
T_{\text{IS}} = 250 \text{ mg/L TSS, "Clear Flow" Guideline. Stream Flow} = Q_s
\]

Induce 25 mg/L higher than upstream TSS
Tools to Achieve Compliance of Pond Discharge

1. Draw down pond after rainfall event.
2. This will generally create more than 12 to 24 hours holding capacity - may allow settling the +2 micron particles prior to next rainfall event.
3. May avoid some of the costs of adding flocculants.
4. Use turbidity measurement of discharge to ensure pond bottom sediment not being remobilized.

Tools to Achieve Compliance of Pond Discharge

1. Rapid settling tests at pond location performed on samples into pond after flocculant has been added.
2. On-site Zeta Meter to guide flocculant addition – to avoid over-dosing and creating toxicity and reduce flocculant consumption.
3. On-site particle size analysis (mobile particle size analyser) to guide flocculant addition.

Need for additional work

1. Study relationship between particle size analyses: (a) soils above the pond (b) soil eroded and entering the pond (c) TSS in pond discharge.
2. Rapid toxicity measurement methods that are suitable for use at the mine site (IQ-Tox, Microtox, etc.)
3. Prediction of pond discharge toxicity when using flocculants.
4. Particle size analyser methods that are suitable for use at the mine site.

END

Treatment of Mine Runoff TSS Using Ponds & Optimizing Flocculant Addition to Ensure Discharge Compliance

Regulator: Is Sediment Control Worth a Dam?

Yes!

No Fishing

Yes!

© by Authors and IMWA