

Introduction

- South Africa
 - Fourth largest producer of coal new coalfields open up currently Numerous impacts on groundwater
 - systems Must manage and protect as SA is a
 - water scarce country.

INTRODUCTION TO COAL MINING

- Coal mining for more than a century (1870).
- Initially, all the mines were in the
- shallower areas around Witbank. Once the economically mineable coal has been removed, mines close down
- and are left to fill up with water. Most of them will eventually decant and/or seep into the adjacent strata and environment, thus polluting aquifers and rivers.
- Coal mining thus alters the
- geohydrology.

Problems with mine closure

- Mine closure
 - Government requires long-term monitoring and management plans
 - Concerns about pollution
 - Surface water and groundwater
 - Volumes and quality of decanting water Impacts on the environment
 - Discard dumps, return water dams, decanting etc
 - Impacts of on humans
 - Basic human needs
 - Health

Mining methods

- Bord-and-pillar
- Lower recharge
- Total extraction
 - Higher recharge due to fracturing and collapse of over burden

 $\partial \theta$

- Deep bord-and-pillar with no subsidence -1 to 4% of the rainfall.
- Stooping 5 9%
- Longwall/Shortwall 8 12%
- Rehabilitated Opencast 12 20%

© by Authors and IMWA

Hydrogeology

- Weathered aquifer
 - 5 15 m (soil & weathered rock)
 - Thick dolerite sill
 - Fountains
 - Low yielding boreholes (0.1 l/s)
 - Lower fractured rock aquifer – Groundwater movement mostly in
 - fractures and faults
 - Low yielding boreholes (1 l/s)

Groundwater flow model

A model is a simplification of reality

Users must always understand the implications of simplifying assumptions Groundwater systems are complicated beyond our ability to evaluate them in detail

Recharge • Sill important Recharge – 7 – 15 % subsidence -1-3% no subsidence - 16 % backfilled opencast - < 1 % where the sill is a couple of</p> metres thick - Shafts high recharge

Water levels

Results

- Water levels will rise with storage coefficient
- Aquifer return to normal pre-mining conditions in approximately 150 yrs
- No decant except at opencast - Lowest point
 - Decant rate approximate 2.5 MI/d
- High sulphates & calcium
- Relatively high pH
- Potential for AMD medium to low

(Courtesy of Anglo Coal Environmental)

