The assessment of mine rebound and decanting in deeper coal mines

Presented by Danie Vermeulen and Ingrid Dennis

Institute for Groundwater Studies
University of the Free State

Overview

• Introduction
• Problems with mine closure
• Geology
• Hydrogeology
• Regional conceptual model
• Validation with numerical models
• Conclusion of results

Introduction

• South Africa
 – Fourth largest producer of coal – new coalfields open up currently
 – Numerous impacts on groundwater systems
 – Must manage and protect as SA is a water scarce country.

INTRODUCTION TO COAL MINING

• Coal mining for more than a century (1870).
 Initially, all the mines were in the shallower areas around Witbank.
 Once the economically mineable coal has been removed, mines close down and are left to fill up with water.
 Most of them will eventually decant and/or seep into the adjacent strata and environment, thus polluting aquifers and rivers.
 Coal mining thus alters the geohydrology.

Problems with mine closure

• Mine closure
 – Government requires long-term monitoring and management plans
 – Concerns about pollution
 • Surface water and groundwater
 • Volumes and quality of decanting water
 • Impacts on the environment
 – Discard dumps, return water dams, decanting etc
 • Impacts of on humans
 – Basic human needs
 – Health
Mining methods

- Bord-and-pillar
 - Lower recharge
- Total extraction
 - Higher recharge due to fracturing and collapse of over burden

Recharge into Collieries:

Conclusions

Before mining 1-3% of the annual rainfall

According to mining type

- Shallow Bord-and-pillar typically 3-8%
- Deep bord-and-pillar with no subsidence – 1 to 4% of the rainfall
- Stooping 5-9%
- Longwall/Shortwall 8-12%
- Rehabilitated Opencast 12-20%

Subsidence and recharge enhancement

Subsidence

K is the hydraulic conductivity, \(\psi \) is the pressure head, \(z \) is the elevation above a vertical datum, \(\theta \) is the water content, and \(t \) is time

© by Authors and IMWA
Geology

- Sandstone, shale, siltstone, mudstone and coal
- Dolerite
 - Dykes and sills, especially B4 and B8 sills

Overburden thickness

Hydrogeology

- Weathered aquifer
 - 5 – 15 m (soil & weathered rock)
 - Thick dolerite sill
 - Fountains
 - Low yielding boreholes (0.1 l/s)
- Lower fractured rock aquifer
 - Groundwater movement mostly in fractures and faults
 - Low yielding boreholes (1 l/s)
Conceptual model (cont)

- Once the mine has filled up with water, the piezometric level of the mine will rise with the storage coefficient value of the mine (and not the specific yield) as conditions have changed from unconfined to confined. The flux from the overlying aquifers into the mine aquifer will decrease as the two water levels approach each other (as pressure gradient decreases).

Example of stratification in deeper mining

Groundwater flow model

- A model is a simplification of reality

Recharge

- Sill important
- Recharge
 - 7 – 15 % subsidence
 - 1 – 3 % no subsidence
 - 16 % backfilled opencast
 - < 1 % where the sill is a couple of metres thick
 - Shafts high recharge

Model setup

- PMWIN
 - Modflow
 - Not ideal
 - Large area (62.5 x 65 km)
 - Cells 200 x 200 m
 - Borders – topographic highs
 - Included 3 layers
 - Weathered upper aquifer
 - Dolerite dyke
 - Fractured rock aquifer

Aquifer parameters

- Geology
 - Transmissivity (m²/d)
 - Vertical hydraulic conductivity (m/d)

<table>
<thead>
<tr>
<th>Geology</th>
<th>Transmissivity (m²/d)</th>
<th>Vertical hydraulic conductivity (m/d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weathered</td>
<td>0.1</td>
<td>1.0 x 10⁸</td>
</tr>
<tr>
<td>Dolerite</td>
<td>1.0 x 10⁻⁶</td>
<td>1.0 x 10⁻⁶</td>
</tr>
<tr>
<td>Fractured rock</td>
<td>1</td>
<td>1.0 x 10⁻⁴</td>
</tr>
</tbody>
</table>

© by Authors and IMWA
Groundwater levels

- Initial water levels
 - Base of mine
- Weathered aquifer
 - Steady state water level

Water levels

Decant

Results

- Water levels will rise with storage coefficient
- Aquifer return to normal pre-mining conditions in approximately 150 yrs
- **No decant** except at opencast
 - Lowest point
 - Decant rate approximate 2.5 ML/d
- High sulphates & calcium
- Relatively high pH
- Potential for AMD medium to low
Should we always cry foul?

My favorite slogan!!!!

Please analyze data scientifically as very emotional statements can sometimes cause more harm

(Courtesy of Anglo Coal Environmental)

Any Questions?