What next at Ynysarwed?

Jennifer N. Geroni

Summer 1994
- Peak flow 36 l/s
- 400mg/l Fe(II)
- pH 3.5 after oxidation
- 12km of nearby canal affected
- Active treatment plant installed
- Constructed wetlands for final polishing
- Fe(II) levels predicted to be 30mg/l in 10yrs

Summer 2010
- Active treatment plant closed
- Dosing with alkali and flocculent
- Reed beds nearly full
- Fe(II) ~100mg/l
- What to do next?
Current system performance

Is the water still net acidic?

Net acidity = Total permanent acidity – Total alkalinity

- Cold titrations
- Hot peroxide titration
- Aeration and degassing

pH change on aeration

- Initial rise due to CO₂ degassing
- Oxidation reaction then lowers pH
- Final pH lower than initial pH
- Hot peroxide titration = net acid

Oxidation rate at Ynysarwed

- \(\frac{d[Fe(II)]}{dt} = K[Fe(II)][O₂][OH^-] \)

Active treatment still needed?

- Aeration/degassing brings Fe(II) within discharge consent
- Sludge recirculation to further increase oxidation rate
- Residence time in reed beds sufficient to settle all particulates

Aeration as a diagnostic tool

- Characteristic shape for net acid waters
- Simple first step in assessing a new discharge
- No need for titration

© by Authors and IMWA
Example: 6 Bells

- 0.36 Tonne/day H_2O_2 (35%)
- $\text{pH} > 8$ in 15 minutes
- No need for peroxide

Implications for treatment

- Greatly reduced need for chemical dosing
- Reduced residence time requirement
- Cost saving on chemicals and land
- Health and safety benefits
- Reduced site traffic

Thank you