Tracing sources and fate of zinc in a mining-impacted river catchment: insights from flow measurements, synoptic sampling and zinc isotopes

Barbara Palumbo-Roe1, Vanessa J Banks1, Simon R Chenery1, Rachel Dearden1, Dominik Weiss2
1British Geological Survey, Kingsley Dunham Centre, Nottingham, UK
2Department of Earth Science and Engineering, Imperial College London, London, UK

Drivers

• Effective remediation requires an understanding of all the sources responsible for the contaminant loading in a catchment.
• Catchments are not homogeneous and the contaminant loading may be subject to a combination of point and diffuse inputs, non-conservative behaviour, dilution where the stream passes through contaminant-free stretches of the catchment, and seasonality.

Metal Ore and Mining

• Fracture-hosted mineralisation in Carboniferous late Dinantian to early Namurian platform carbonates.
• Galena and fluorite are the main ore minerals, accompanied by subsidiary baryte, sphalerite, wittelite and chalcopyrite.
• The majority of the lead mines were exploited during the period 1692 to 1883.
• Fluorspar mining continued until 1995, when the last mine, Grove Rake, closed.

Surface Water Monitoring

• To cover water stretches upstream and downstream of visible mine water discharges or at the confluence of major tributaries.

Study Site: the Rookhope Catchment

• Catchment area 37 km². Elevation 600 to 350 m OD. Annual rainfall ~ 1000 mm. EQS failure: Zn, Pb.
• Cumulative zinc load 5.6 to 18.5 kg/day

Outline

Findings of a project which uses a catchment-based approach to determine the importance of point and diffuse sources of zinc contamination and natural attenuation processes in a mining-impacted catchment in the UK.
Sampling Points

Stretch 21 Pore water sampling

\[Zn \ 1.5-2.4 \ mg/L; \ \ \ \ HCO_3 \ 150 \]

Discharge 125 L/s;

P 7- Wolfcleugh outbreak

Sampling Points

Maj changes in the Rookhope Burn stream chemistry occurred downstream of the location of the mine water outbreak at Wolfcleugh point 7 (stretch 6-9)

The Zn load profile differs from the concentration profile in that it displays two distinct peaks in load

Legend

Inflow Points

Instream Points

Sub-surface contributions

Clear discharge contribution to point 10, identified by closely spaced flow monitoring, aligns with a series of mine workings/northeast to southwest-trending mineral veins.

Min cumulative Zn attenuation 104 mg/s

Min cumulative Zn loading 128 mg/s

Along stretch 13-16 Zn concentration decreases: attenuation by chemical precipitation

Along stretch 19-23 reduction in flow (decrease in concentration less significant); flow loss below the river bed or karstic loss?

No obvious inflow can account for the gain in zinc load along stretch 6-9. Sub-surface contributions of contaminated groundwater to the river bed of Rookhope Burn.

Hydrogeic Zone Sampling

From the loading profile the existence of sinks of zinc with cumulative Zn attenuation ranging between 80 to 140 mg/s has been established.

The Hyporheic Zone (HZ), the water saturated region at the interface of surface water (SW) and groundwater (GW), was sampled to assess its metal attenuation capacity.

Focus on a river stretch with dissolved Zn and Mn attenuation.

Sampled to assess its metal attenuation capacity.

From the loading profile the existence of sinks of zinc with cumulative Zn attenuation ranging between 80 to 140 mg/s has been established.

The Hyporheic Zone (HZ), the water saturated region at the interface of surface water (SW) and groundwater (GW), was sampled to assess its metal attenuation capacity.

Focus on a river stretch with dissolved Zn and Mn attenuation.

Sampled to assess its metal attenuation capacity.

No obvious inflow can account for the gain in zinc load along stretch 6-9. Sub-surface contributions of contaminated groundwater to the river bed of Rookhope Burn.

Zn attenuation

Zn leachates

Zn attenuation

Sub-surface contributions of contaminated groundwater to the river bed of Rookhope Burn.
Vertical Gradients in the HZ
- Oxidizing conditions in the shallow HZ (0-30 cm) with Eh decrease at 40 cm depth, pH decreases in the HZ.
- Conservative elements Li, B, Cl not shown show small vertical gradients compared to the greater difference with measured GW/MW concentrations (LiGW ~50 ug/L); negligible GW contribution to the HZ.
- Mn, Fe, Zn and Pb do not behave conservatively.

Manganese Attenuation in the HZ
- Mn\(_{SW}\) and Fe\(_{SW}\) Mn\(_{HZ}\) and Fe\(_{HZ}\) in the shallow HZ.
- Attenuation by Mn precipitation from Mn-rich SW in the oxidised pore waters (Eh 400 mV) of the shallow HZ.
- Down the HZ profile dissolved Mn increases; influence of more reducing conditions enhancing Mn solubility.

SEM Evidence of Mn precipitation
- SEM evidence of Mn precipitation.

Zinc and Lead in the HZ
- Pb\(_{SW}\) and Zn\(_{SW}\) >> Pb\(_{HZ}\) and Zn\(_{HZ}\).
- HZ sediment is a potential source of zinc and lead loadings to either the SW or GW depending on the hydrological conditions.

Feasibility of Zn Isotopes as Environmental Tracers
- The relative abundances of Zn isotopes (\(^{64}\)Zn) in natural waters may be used to fingerprint sources of this metal and to probe important biogeochemical reactions.
- The variation in isotopic ratio of a solute ion can be less ambiguous to interpret than the corresponding variation of water chemistry, because isotopes are affected by a smaller number of processes than chemical concentrations.
- To be successful tracers of anthropogenic and natural sources there should be a sufficient isotope ratio variation among end-members.
- To be effective tracers of weathering reactions there must be a significant contrast in isotope composition among reagent-product.

Known isotope Fractionation processes:
1. Weiss et al. (2003) demonstrated preferential plant uptake of the lighter Zn isotope, concentrating the heavier isotopes in the pore water and runoff.
2. Sablonnet et al. (2008) experimentally constrained a separation factor for Zn adsorption onto ferrihydrite of +0.55‰ (\(\Delta^{64}\)Zn absorbed-solution).
Preliminary Findings

- Headwaters from peat blanket
- Potential Zn sources (mine waste, mine water, mine seepage)
- AMD precipitate ($\delta^{66/64}\text{Zn}$ fractionation on iron oxides)
- Water at the base of the catchment

We sampled:

- $\delta^{66/64}\text{Zn}$ in mine waste and seepage - primary ore (0.15‰)
- Headwater $\delta^{66/64}\text{Zn}$ relatively heavier (0.39‰, Zn-organic complexes?)
- Enrichment in heavier isotopes in iron ochre precipitate from mine water
- Significant variations in $\delta^{66/64}\text{Zn}$ between headwaters and base of catchment.

Results

Conclusive remarks

1. Unknown contributions to the Zn load through the river bed highlight the need for more detailed understanding of the hydrology associated with abandoned workings.

2. The observed triggering of the mine water outburst raises the question of the stability of the underground workings and the risk of designing remediation schemes for a single point in the event of a comparable outburst elsewhere in the catchment.

Conclusive remarks (II)

3. We have shown how riverbed sediments may act as a long-term source of zinc, lead to rivers, thereby potentially diminishing the short to medium term benefits delivered by mine water source point remediation.

4. We have shown significant differences in $\delta^{66/64}\text{Zn}$ in the catchment. Yet, our ability to interpret these measurements in terms of sources and processes is limited because of the paucity of published studies that explore the mechanisms of Zn isotope fractionation. More work is needed to gain further insights on the fractionation behaviours of Zn isotopes to make them strong geochemical probes in biogeoscience.

Thank you for your attention

Geology

© by Authors and IMWA