

© by Authors and IMWA

Mock Effluents - Results

- · Investigations into TDS-related toxicity: Elevated TDS levels in Hogarth account for the majority of the toxicity
 - BUT: The reduction in toxicity due to EDTA addition (TIE tests) indicates that metals may be a minor toxicant as well
- Lemna minor was less affected than other species tested
 - Signs of stress at greater concentrations of Hogarth:
 - Small, unhealthy fronds, chlorotic tissue, shorter roots Due to elevated TDS levels (2000 mg/L), mainly SO₄²⁻

Predictive Modeling

Results

- One-way ANOVA:
 - Lower total frond surface area in all treatments compared to controls
 - More chlorotic and necrotic tissue in certain treatments
 - Once the effect of dry weight was controlled, chlorophyll-a content was shown to be reduced by Hogarth 2 m water

Conclusions

 Frond counts + IC₂₅ calculations

 GREATLY underestimate toxicity

Include small fronds and dead or chlorotic fronds

- Chlorophyll-a and surface area measurements give better estimates of toxicity: Future pit lake water quality will negatively impact aquatic macrophytes • Likely due to elevated Ca²⁺, Mg²⁺, and SO₄²⁻
- No longer acute toxic effects
- Dynamic nature of the pit lakes is producing a chronic toxic effect, now and in the future ٠