Neutralisation distance of acid drainage and migration range of pollutants

Bruno Lemière
BRGM (French GeoSurvey)

Issues with Acid mine drainage (AMD)

> What everybody knows about AMD (MEND,...)
 - one of the biggest environmental issues of mining,
 - releases massive amounts of solubilised metals, metalloids and salts in surface water
 - both active and closed mines, may begin after closure
 - close relationship between neutralisation and contaminants release

> Focus here on former mines
 - naturally occurring neutralisation in the downstream drainage
 - effects of passive barriers

Basin management in mining or former mining regions

Issues with AMD neutralisation

> Neutralisation processes
 - Natural attenuation in watercourses
 - Mine water neutralisation with passive barriers
 - Mine water neutralisation by active treatment

> Neutralisation distance
 - Neutralisation is accompanied by the gradual precipitation of most pollutants,
 - deposited or further carried away in solid form as sediments.

Good practice in mining management: waste facilities design, mine water management, neutralisation

Case studies

- India
 - Subramakhar: Cu, Ni, U
- Greece
 - Nika: Cu, Zn, Pb
- Romania
 - Calimani, S
- France
 - Huelgoat: Pb
- Iberic Pyritic Belt
- Cornwall Tin Belt

Methods

> Field measurements
 - pH, electrical conductivity (EC), ORP, DO, alkalinity
 - Water flow
 - Water samples filtration: 0.45 or 0.1 µm
 - Periodic monitoring campaigns to evaluate the effects of seasonal variations on the neutralisation range

> Laboratory analyses
 - Major and trace laboratory analyses, carried out by ICP/AES, ICP/MS and/or AAS
 - Sediments by partial extraction or total digestion
 - Acid base accounting (ABA) of solid waste
 - Reference to acid water and to neutralisation from European Directives: lower guide value of pH 6.5

Data required to calculate acidity and metals flow or balance
India

- **Site**
 - Singhbum copper district – Cu Ni U Zn Ag
 - AMD at several mines, especially at Surda

- **Acidity flow**
 - Mine drainage flows down a hill slope, then reaches paddy rice fields on the flat alluvial beds of Subarnarekha river
 - Brook discharge negligible vs river discharge
 - Neutralisation zone (0.6 to 2.3 km from runoff) along the hill slope and at the beginning of the alluvial plain
 - Monsoon rains shift slightly downwards the neutralisation front

- **Host geology**
 - Silicic volcanosedimentary formations
 - Fracturation

India: AMD parameters downstream Surda mine

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>0.00</td>
</tr>
<tr>
<td>DO (mg/l)</td>
<td>1.00</td>
</tr>
<tr>
<td>TDS (g/l)</td>
<td>2.00</td>
</tr>
<tr>
<td>Zn (μg/l)</td>
<td>3.00</td>
</tr>
<tr>
<td>Cd (μg/l)</td>
<td>4.00</td>
</tr>
<tr>
<td>Pb (μg/l)</td>
<td>5.00</td>
</tr>
<tr>
<td>Mn (μg/l)</td>
<td>6.00</td>
</tr>
<tr>
<td>Cu (μg/l)</td>
<td>7.00</td>
</tr>
<tr>
<td>Fe (μg/l)</td>
<td>8.00</td>
</tr>
<tr>
<td></td>
<td>9.00</td>
</tr>
<tr>
<td></td>
<td>10.00</td>
</tr>
</tbody>
</table>

Greece, Kirki

- **Site**
 - Kirki abandoned Cu-Zn-Pb mine in NE Greece
 - Uncontrolled AMD occurs with Cd pollution
 - Mediterranean, with stormy rainfall regime

- **Host geology and geomorphology**
 - Silicic volcanosedimentary – high fracturation
 - Drainage is channelised into a narrow volcanosedimentary gorge, with little or no buffering potential.
 - Extensive formation of biofilms

Acidity flow

- Acidic water in contact with oxidised mine and pit walls (pH 2.9)
- Further acidified (pH 1.5) and enriched in metals (up to 240 mg/l Zn and 2.4 mg/l Cd) while percolating sulphide-rich waste piles.
- Neutralisation range between 600 m and 2 km according to seasonal rainfall and discharge
- Torrential regime, favouring oxidation, neutralisation and flushing, but also transfer of pollutants in solid rather than solute form.
- Despite neutralisation in the downstream gorge, Cd-Zn pollution is observed downstream to the sea

Greece - Kirki

- Pb and Cu levels fall down before Zn and Mn
Romania – Calimani Sulphur, Suceava County

Site
- Native sulphur extracted until 1997 in open pit out of acidic volcanics
- Uncontrolled AMD, no significant metal pollution
- Acid river flow observed far away from the mine (25-40 km)

Acidity flow
- Free rainfall percolation through huge pyritic waste heaps
- Severe acid drainage (pH 1.9 to 3.5) and high flow rates
- Acidic pH (4 to 6) also observed in brooks outside the mine area: acid rock drainage (ARD)
- Geochemical background for pH much lower than 6.5
- Rain storms tend to flush massive quantities of acidic water from the waste heaps and to wash pit walls
- Lower pH in river despite the much higher discharge
- Neutralisation front extends well beyond 25 km

It makes no sense to neutralise runoff beyond geochemical background!

罗马尼亚 – Calimani硫磺，苏恰瓦县

场地
- 在1997年以前，从酸性火山岩中开采原生硫磺。
- 硫磺的开采无监控，无显著金属污染。
- 酸性河流远距离影响矿场（25-40公里）。

酸度流
- 由于降雨和酸性废石的冲洗，酸性流的pH值为1.9到3.5，且流速极高。
- 其他地区也观测到pH为4到6的酸性流：酸性岩石流。
- 地球化学背景的pH值远低于6.5。
- 降雨能冲洗出大量的酸性水。
- 中和带远超过25公里。

在该区域中和矿坑水是没有意义的。

France, Huelgoat: Pb-Ag former mine

Site
- Lead and silver were extracted until 1903 (total production 26000 tonnes).
- Natural runoff is accompanied by uncontrolled AMD with minor Pb-Zn pollution.

Acidity flow
- Mine discharge (15 m³/h) is released in a tributary (20-25 m³/h) of the local river (7500 m³/h).
- Mild acidity only (5.9 to 7.5).

Host geology and geomorphology
- Granite and volcanosedimentary silicic rocks provide dilution potential with fractures network.
- The low hills topography at the mine site (elevations from 100 to 200 m) and oceanic climate favour slow flow and steady sediment migration and deposition.

沉积池控制金属迁移。

法国，Huelgoat：铅-银前矿场

场地
- 铅和银在1903年之前被开采（总产量26000公吨）。
- 自然径流伴随不被监控的AMD，及少量的Pb-Zn污染。

酸度流
- 矿坑排水（15 m³/h）被释放到当地的支流（20-25 m³/h）。
- 酸度只有5.9到7.5。

伴生地质和地形学
- 粗面岩和火山沉积沉积的酸性岩石提供稀释潜力。
- 低丘陵地形（海拔100到200 m）和海洋性气候有利于慢速流动和稳定的沉积。

铅和锌流控制迁移。
Factors affecting the neutralisation range

> **Acidity flow**
 - acidity of discharge (pH, alkalinity) at runoff points
 - flow rate of runoff
 - Instant and cumulated H+ emission by time unit

> **Acidity dilution**
 - discharge of the receptor watercourse
 - receptor watercourse chemistry affects also neutralisation distance, not only through its pH, but especially its alkalinity
 - Dilution through infiltration (fracture network)

Mixing of acid water with incoming neutral water breaks the chemical equilibrium of mine water and uses the buffering capacity of dilution water

Factors affecting the neutralisation range

> **Hydrology and hydrodynamics**
 - Catchment topology and flow rate
 - Topography and slope profile
 - Fast and turbulent flow regimes promote oxygenation, CO2 release and exchanges with sediment.
 - They accelerate both neutralisation and precipitation of the solute load through reactions with the milieu
 - Clearly shown at breaks in slope where neutralisation fronts tend to be located
 - Precipitation, sedimentation, water residence and pooling
 - Transitory hydrodynamics and rainfall regime (flushing)
 - Flow velocity variations must be taken into account for kinetics effects in the neutralisation distance model

Small AMD area, wide metal dispersion

Factors affecting the neutralisation range

> **Buffering capacity**
 - Chemistry of river bed materials: carbonate rocks, carbonate-bearing sediments and gravel, organic matter
 - Exchange surfaces
 - Buffering potential of receiving watercourses

> **Solute content and coprecipitation ions**
 - Carbonates, sulphate, phosphate

Precipitation of metals, where and how?

Factors affecting the neutralisation range

Conclusions

- Not enough observations for a quantitative approach to the dependence of AMD neutralisation distance on any parameters, but...
- Observations from a few sites useful for AMD mitigation strategy
- Localisation of the neutralisation front useful for water quality safety
- To be done both in normal and stormy regime
- It will contribute to define in the catchment where the use of surface water is safe, for which uses, and with which precautions.

Observation of the flow and catchment features useful for predictive strategies in case of delayed AMD or rebound

Conclusions

> **Remediation**
 - Passive reactive barriers near a break in slope upstream from the neutralisation zone reduce downstream contaminants dispersion.
 - Upstream water derivation around AMD sources allows to control downstream quality and discharge dispersion
 - PRB implementation should be done in a catchment dynamics perspective
 - Interpretation of the position of the neutralisation front relationship must take into consideration any existing ARD background. It would make no sense to mitigate AMD further than background basin pH values.

Complements ABA in the predictive models but for transfer!
Thank you for your attention!
(partners for future projects welcomed)

India, Subarnarekha, Surda mine runoff

<table>
<thead>
<tr>
<th>Sampling point</th>
<th>Dist km</th>
<th>pH</th>
<th>EC</th>
<th>Eh</th>
<th>Cu</th>
<th>Zn</th>
<th>SO4^2-</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surda mine runoff</td>
<td>0</td>
<td>3.3</td>
<td>1210</td>
<td>567</td>
<td>823</td>
<td>477</td>
<td>45</td>
<td>3.31</td>
</tr>
<tr>
<td>Surda backfilling point effluent</td>
<td>0.3</td>
<td>3.5</td>
<td>1844</td>
<td>503</td>
<td>746</td>
<td>363</td>
<td>4</td>
<td>3.34</td>
</tr>
<tr>
<td>Surda brook--graveyard</td>
<td>0.6</td>
<td>4.3</td>
<td>1286</td>
<td>328</td>
<td>193</td>
<td>316</td>
<td>158</td>
<td>3.51</td>
</tr>
<tr>
<td>Surda brook - upper paddy fields</td>
<td>2.3</td>
<td>6.5</td>
<td>482</td>
<td>271</td>
<td>138</td>
<td>38</td>
<td>178</td>
<td></td>
</tr>
<tr>
<td>Surda brook - lower paddy fields</td>
<td>3.6</td>
<td>4.3</td>
<td>1194</td>
<td>279</td>
<td>742</td>
<td>254</td>
<td>595</td>
<td></td>
</tr>
<tr>
<td>Subarnarekha river confluence</td>
<td>4.3</td>
<td>6.7</td>
<td>163</td>
<td>300</td>
<td>14</td>
<td>23</td>
<td>7.86</td>
<td></td>
</tr>
</tbody>
</table>

Other case studies
Some well documented cases...
- Iberic province
 - Rio Tinto
- Cornwall tin province
 - Wheel Jane
- And so many others
 - Metals mining
 - Coal mining

Need for comparative databases