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Abstract Mercury speciation was determined in areas impacted by gold mining. Both inorganic and
methylmercury were detected at high concentrations in all watersheds where mining occurred. Migra-
tion of mercury from pollution sources due to seasonal influences was determined. Enhancement of
mercury methylation occurred in deeper sediments at the lowest redox potential, higher pH, carbon
and sulphur and enrichment of inorganic mercury.
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introduction
The Witwatersrand Basin in south Africa (sA) is the biggest gold mining region in the world. Mer-
cury, which occurs in gold-bearing ores, was also used for gold recoveries till 1915 and is still used
in illegal artisanal mining. Consequences of these activities are the release of Hg to the environ-
ment. It was reported that the Hg emissions in sA are second only to China (Paycna et al. 2005).
This is due mainly to coal combustion and gold mining.

Risk assessment of Hg pollution in south Africa is based on total element concentrations.
Unfortunately, the determination of total Hg is not sufficient to understand its transport and fate
in the environment. The purpose of this study was to carry out a quantitative assessment of mer-
cury pollution in areas of four watersheds suspected to have elevated concentrations of total mer-
cury due to a long history of gold mining activities. It is necessary to evaluate Hg speciation, and
characterize potential sources, pathways, receptors and sinks in order to implement mitigation
strategies and minimize environmental risk.

This paper describes Hg speciation in selected water, soil and sediment samples from Val
River watershed during two sampling campaigns (dry and rainy season). Mining operations in
the region commenced in the late 19th century, and used amalgamation techniques. sampling
sites were identified from historical aerial photographs (post-1948), showing extensive shallow
mining of the Black Reef, and large spillages from old mine tailings facilities. Deep-level mining
is being undertaken now alongside reprocessing of old tailings to recover gold left-over by previ-
ous extraction methods. However, environmental degradation from mining operations is wide-
spread in the region, and there are anecdotal reports of artisanal mining using Hg amalgamation.

Methods
A sub-set of the data from two sampling campaigns (the late dry season – september 2008, and
late wet season – February 2009) is presented to illustrate Hg trends in different substrata. Water,
soil and sediment samples were collected from adjacent to gold tailings facilities, from a licensed
pollution control dam (which receives dirty water discharges from tailings facilities and recycles
these back to the metallurgical process), and from a stream known to have received spillages (pre-
1940’s) from tailings facilities and drainage from other sources (including tailings, industries,
graveyards and artisinal mining activities; Fig.1, Table 1). soil pits were excavated to a maximum
depth of 3 metres, and all field parameters measured in situ. Water samples were collected in acid-
washed polypropylene containers, and sediment samples stored in double plastic bags in the dark
within cold boxes. samples were prepared using the methodology of Rodriguez Martin-Doimea-
dios et al. (2003), and Hg species, inorganic Hg (IHg) and methylmercury (MHg), were determined
using gC-ICP Ms. Analyses were validated using a certified reference material (IAEA405 estuarine
sediment) certified at 810 ± 140 ng g⁻¹ IHg and 5.49 ± 0.53 ng g⁻¹ MHg.
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results and discussion
The CRM IAEA 405 results agreed well with the certified values, at 820 ± 20 ng g⁻¹ for IHg and 5.50
± 0.42 ng g⁻¹ for MHg, with LoD of 0.39 pg L⁻¹. Back-ground mercury values in the area were rela-
tively low - <50—80 ng g⁻¹. Mercury concentrations were ranging from 20.96 ng L⁻¹ in waters to
approximately 4300 ng g⁻¹ in sediments (Tables 2,3).

our sampling was biased towards contaminant sinks, and nearly 80% of surficial sediments
had Hg concentrations above the Threshold Effect Level (TEL) of 174 ng g⁻¹ (UsEPA 1997). Enrich-
ment in HgToT was evident in deeper soils adjacent to tailings facilities, reaching concentrations
of mg g⁻¹. Most sediment profiles showed enrichment in MHg concentration near or at the layer
corresponding to the lowest redox potential and the highest IHg concentration (Figure 2) and
were closely related to sulphur and carbon levels (Table 2).

This trend was also observed by Hines et al. (2004). They concluded that redox potential, ad-
vective transport, or higher temperatures stimulating microbial sulfate reduction should explain
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Figure 1 Sampling
area

Table 1 Description
of sediment

samples
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and water samples
collected during
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this trend. Furthermore, Harris et al. (2007) reported maximum MHg concentrations where the
inorganic pool of mercury in sediments was the most bioavailable to methylation processes. Metal
ions adsorbed in acid media increase with pH, until the threshold value required for partial dis-
solution of solid and formation of soluble metal-humic complexes is exceeded (Lacerda et al.
1998). Increases in HgToT were correlated with pH (Figure 3). Methylation occurs in deep sedi-
ments at higher pH but, due to its mobility, MHg migrates to shallow levels.

The concentration of HgToT in waters of the pollution control dam was above 1 ng mL⁻¹, with
nearly 50% in the form of MHg. We observed different trends in the dry and rainy seasons, with
only 0,005 ng mL⁻¹ in water during the rains, despite concentrations in bottom sediments of up
to 8500 ng g⁻¹ Hg.

In areas where gold mining operations involve milling of Au-bearing ores and tailings depo-
sition, metallic Hg can eventually be mobilized through particle transport and leaching (Lacerda
et al. 1998). Although Hg leaching from tailings seems to be a slow process, over the years the bulk
migration of spilled tailings, and seasonal leaching from tailings and polluted soils, is important
dispersal mechanisms for Hg. seasonal migration of Hg could explain the patterns observed in
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Table 3 Compara-
tive selected data
obtained during

dry season
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Figure 2 Example of Hg trends in a sediment profile adjacent to the tailings facility. Note that
MHg concentration is multiplied by a factor of ten

Figure 3 Trends in Hg and MHg within sediment profiles in relation to redox potential (Eh) and
pH: (a) sediments below the pollution control dam, and (b) stream bank sediments
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the stream bank sediments. In the rainy season (Figure 3b), Hg concentrations in surface sediment
were 10 times higher than in the dry season. It was not possible to evaluate Hg in the bulk tailings
which spilled into this stream, as this occurred in the first half of the 20th century. However, con-
centrations of Hg in surficial sediments near the later TsF (which commenced construction in
the 1940s and is still in operation), were about 315 to 1000 ng g⁻¹ (Figure 2).

Lacerda et al. (1998) studied changes in Hg concentrations in water and suspended particles,
as well as major physico-chemical parameters in streams receiving drainage from tailings during
storm events, and found a drastic increase in the redox potential and in Hg concentrations in sus-
pended particles. In our study, pH in the pollution control dam decreased from the dry to the
rainy season (from 7.8 to 7.5) and redox potential increased (from 335 to 450 mV), with an increase
in Hg concentration in the (unfiltered) water. These results suggest that rain erodes fine particles
enriched with Hg from sources, followed by Hg transport with suspended particles. The relation-
ship between Hg dispersion, erosion and transport of suspended particles, supports a seasonal
dispersal mechanism, with rainfall also diluting the existing Hg in water bodies. Hg-contaminated
particles from tailings and secondary sources are transported during rains and deposited in sed-
iments along drainage pathways. After this, remobilization of contaminated particles from sedi-
ment surfaces may take place, resulting in a decrease in Hg concentrations in the drainage bottom
sediments and exportation to areas away from mining sites (Lacerda et al. 1998). This process ex-
plains the high Hg concentration of about 4300 ng g⁻¹ measured during the rainy season in the
upper layer (0—20 cm) of sediments in receipt of run-off from the pollution control dam. The de-
crease in Hg concentration with depth within the control dam sediments (from 8500 down to
1500 ng g⁻¹), and in the directly adjacent sediment (from 4286 ng g⁻¹ at 0—20 cm to 126 ng g⁻¹ at
20—40 cm, suggests that the localized surface accumulation of Hg is from recently deposited par-
ticles and leached Hg. In contrast, the enrichment of Hg at deeper levels in sediments adjacent to
the old tailings facilities (Figure 2), might be due to historical loads of Hg in tailings and seepage
from the facilities.

Conclusions
Mercury contamination, probably as a result of use in amalgamation, is to be widespread in the
Witwatersrand Basin gold fields. This study identified Hg enrichment of sediments in the vicinity
of gold mining activities. Although the function of pollution control dams and tailings storage
facilities is to contain waste, the mitigation of Hg contamination may require additional measures
to address all historic and artisinal sources. High concentrations of Hg were found at surface in
over-flow pathways, and in deep sediments in receipt of seepage from tailings. This indicates that
a big proportion of Hg used in gold ore processing was lost to the environment. Mercury in sedi-
ments mostly speciated as Hg⁰. Enhancement of mercury methylation occurred mainly in deeper
sediments at regions with the lowest redox potential, higher pH and enrichment of inorganic
mercury.
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