The effects of a plug of alkaline water in an acid stressed watershed

Natalie Kruse, Amy Mackey

Ohio University, Athens, Ohio, USA, krusen@ohio.edu

Extended Abstract

Alkaline addition is a common strategy to treat acid mine drainage, adding sufficient alkaline material to buffer acid and reduce metal solubility. Alkaline addition aims to treat acid stressed environments. Previous work has suggested that it takes multiple years for a stream system to recover from short-term acidification (Kruse et al. 2012). This study aims to quantify the chemical and biological impacts of a pulse of alkaline water in a previously acid stressed stream.

Hewett Fork is a subwatershed of the heavily coal mined Raccoon Creek watershed in Southeastern Ohio. Three major acid sources, the Rice-Hocking Mine at Carbondale, Carbondale Creek, and Trace Run (Fig. 1) are treated by a lime doser located at the discharge from the Rice-Hocking Mine at the site labelled Carbondale Doser in Fig. 1, 11 mi (17.7 km) from the mouth of Hewett Fork. During typical operation, enough alkalinity is added by the Carbondale Doser to buffer the acidity from all three acid sources, allowing biological recovery further downstream. Typically, the alkalinity added by the doser is consumed by Waterloo and additional alkalinity enters the watershed from alkaline tributaries (Kruse et al. 2013).

After several months of inconsistent operation of the lime doser in Carbondale, Ohio, during the Spring of 2014 due to bridging of fine lime in the doser, the doser was manually unloaded to allow for delivery of coarser material. Approximately ten tons of lime were emptied into the stream channel over an eight-hour period at the site labelled Carbondale Doser in Fig. 1. Water quality was monitored 1.2 mi (2 km) downstream of the doser at site Route 56 (conductivity, temperature, water depth), 2.6 mi (4.3 km) downstream of the doser at site Waterloo (pH, conductivity, total dissolved solids, temperature, ORP), and 6.3 mi (10.1 km) downstream of the doser at site King Tunnel (pH, conductivity, total dissolved solids, temperature, ORP). Locations are shown in Figure 1. Water quality logging began two weeks before the doser was unloaded and continued for six weeks after. Macroinvertebrates were sampled six weeks after the doser was unloaded and used to calculate the multimetric index, MAIS (Macroinvertebrate Aggregated Index for Streams, Johnson 2007, Smith and Voshell 1997), used in Ohio to assess acid mine drainage stress.
While in-stream chemistry in the day that followed the doser unloading did exceed ideal ranges for aquatic life both 1.2 mi (2 km) and 2.6 mi (4.3 km) downstream (pH > 11, conductivity > 3000 µS/cm), as shown in Fig. 2 and 3. The water quality impacts were much more moderate 6.3 mi (10.1 km) downstream, as shown in Fig. 4. The large alkaline pulse had a short extent, but had large water quality impacts in that zone; however, the section of stream that had the largest water quality changes was also the section of stream that had the poorest biological recovery (Fig. 5).

Before the alkaline pulse of water in this watershed, the biological community had improved from 6.3 mi (10.1 km) downstream of the doser to the mouth of the stream. The 2014 macroinvertebrate data shown in Fig. 5 suggests that the hyper-alkaline water did not significantly impact the biological community; there was no significant change from the previous year. One hypothesis of the mechanism for limited biological recovery is episodic pulses of poor water quality. This case suggests that this may be the case in a limited section of the stream and should be studied further.
Figure 2 Water quality at Route 56 shows the large increase in specific conductivity (SC) after the doser is unloaded on June 18, 2014. Other variations in SC at this site have a relationship with depth of water.

Figure 3 Water quality at Waterloo shows a large increase in both specific conductivity (SC) and pH following unloading of the doser. The pH peaked at over 11 and SC peaked at over 1500 μS/cm.
Natural variation in pH was greater than the variation seen on June 18, 2014 due to the alkaline pulse. The pH peaked at less than 8.

While previous work (Kruse et al. 2012) suggests that short term acidification (~2 weeks) can impact the biological community for several years, a short term alkaline episode (~1 day) does not
significantly impact the biological community. This suggests that there may be a threshold of duration of impact that macroinvertebrates can withstand or that alkaline tolerance may be greater than acid tolerance.

Key words: Mine water, hyper-alkaline, lime doser

References

Johnson KS (2007) Field and laboratory methods for using the MAIS (Macroinvertebrate Aggregated Index for Streams) in rapid bioassessment of Ohio streams. Athens: Ohio University Department of Biological Sciences

