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Abstract Panasqueira Mine (Portugal) has been mainly exploited for wolframite, cassiterite and 
chalcopyrite (W, Sn, Cu). Through the detailed and careful characterization of tailings with different 
mineralogy, new invaluable insights into the weathering characteristics of many different minerals will 
be received, making possible proper risk assessments, and predict which type of tailings might pose 
severe future environmental risk namely to the Zêzere river. The Zêzere River is an important river 
and is under the Cabeço do Pião tailings influence. The knowledge and methods acquired will lead to a 
conceptual model working as guidance to a more sustainable mining in the hereafter.
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Introduction 

The worldwide demand for metals and minerals is rapidly rising, driven by economic 
growth. Europe delivers a huge trade deficit for metallic minerals, and thus needs to evoke 
more of its own resources to reduce this dependence. Mining is still the primary method 
of metals extraction so it is of crucial importance to identify new processing methods and 
process design, as well as risk assessment for the remaining residuals. 

Since 1898, Panasqueira Mine in Portugal was exploited for wolframite, cassiterite and 
chalcopyrite (W, Sn Cu), the latter two as by-products. Until 1912 the mining scale was mi-
nor, but increased by 1928 and ultimately got a large development. One, of seven areas is the 
Cabeço do Pião (Fig.1) where tailings have been displaced from 1927 and 90 years ahead. 
The tailings deposit has an average height between 30 and 40 m and slopes around 35º. The 
estimated volume of the tailings is 731 034 m3. An ore processing plant was constructed 
at that site using gravity, electromagnetic separations, and flotation. The grain size of the 
material is variable. The tailings have average grades around 4000 ppm of W, 6800 ppm of 
Zn, 2494 ppm of Cu, but also contain 76350 ppm of As. The geochemistry and mineralogy 
of the tailings have been thoroughly studied as well as the acid mine drainage impact. The 
tailings are nowadays property of the municipality of Fundão and they are not included in 
the National Program for Mine Rehabilitation. 

Material and Methods 

Sampling of the tailings was performed in two different dates: in December 2016 and Jan-
uary 2017. It was used an excavator (Fig.2) to gather 33 superficial (50 to 60 cm of depth) 
mineral waste samples. The sampling was performed on a rectangular grid of 40 x 20 m and 
a Global Position System (GPS) allowed to georeferenced all with UTM system.
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Figure 1 Cabeço do Pião tailings deposit (Joel Braga, Sept 2014)

Figure 2 Sampling procedure – Cabeço do Pião tailings deposit 

The samples were then dried at a temperature of 50 ºC during 24 h. The potentially toxic 
metals and semi-metals were analyzed by Energy Dispersive X-Ray Fluorescence (XRF) 
method using an X-MET8000 instrument (Oxford Instrument). The equipment was used 
in Mining Mode, allowing fast and accurate analysis with low limits of detection. After, the 
geochemical dataset composed by 16 elements (Bi; Cu; Zn; Se; Hg; As; Pt; Rb; K; Mn; Sn; 
Ti; W; Zr; Fe and Cd only determined in 22 samples) went through a multivariate statistic 
analysis (Principal Components Analysis – PCA Spearman technique) to evaluate the rela-
tionships among the trace elements and the presence of outliers. The first four factors retain 
78% of the total variability and hence providing an accurate image for the geochemical as-
sociation s definition. Three important associations emerged: Group 1: W and Mn Group 2: 
Cd; Zn; Cu and Group 3: Sn; As; Hg (Fig. 3).



1242

Lappeenranta, Finland IMWA 2017Mine Water and Circular Economy

Wolkersdorfer C, Sartz L, Sillanpää M, Häkkinen A (Editors)

Figure 3 Principal Component Analysis (PCA) – Factorial planes F1/F4 and F3/F4; a) Correlation 
circle and attributes’ projection; b) individual’s projection

(a)

(b)

Thus, in a first step the missing Cd values were estimated using multi-linear regression 
where Cu and Zn were used as independent attributes for Cd prediction (Tab. 1; Fig. 4): 

Cd= -2.53×10-4 – 2.36×10-3Cu + 1.49×10-2Zn                          (1)

Table 1 Correlation matrix and Multiple Correlation Index for Cu; Zn and Cd

 Cu Zn Cd

Cu 1 0,839 0,699

Zn 0,839 1 0,871

Cd 0,699 0,871 1

Multiple Correlation index: Cd Cu Zn 0,84

Figure 4 Linear regression: training and validation sets

In a second step a geostatistical approach was used to accomplish the construction of ele-
ments’ concentration patterns. 

Geostatistical techniques are founded along the theory of regionalized variables (Matheron, 
1971) which says that variables within an area show both random and spatially structured 
properties (Journel and Huijbregts, 1978). Experimental variograms must be estimated and 
modelled to quantify the spatial variability of random variables as a function of their sep-
aration lag (Antunes et al. 2013). When forecasting the risk of contamination (e.g. months 
ahead), it is mandatory to stress the importance of the future estimated values to exceed the 
maximum admissible values. The delineation of enriched zones requires the interpolation 
of content values to the nodes of a regular grid where a prediction model will work as guid-
ance to a more sustainable mining management. 

The new variables (F1 and F3) obtained by PCA are defined as regionalized variables and 
are additive by construction. Therefore, a two-step geostatistical modelling methodology 
was used as follows: 

1) Selected attributes (F1 and F3) went through structural analysis, and experimental vari-
ograms were computed (Fig. 5);

1
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Figure 4 Linear regression: training and validation sets

In a second step a geostatistical approach was used to accomplish the construction of ele-
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Geostatistical techniques are founded along the theory of regionalized variables (Matheron, 
1971) which says that variables within an area show both random and spatially structured 
properties (Journel and Huijbregts, 1978). Experimental variograms must be estimated and 
modelled to quantify the spatial variability of random variables as a function of their sep-
aration lag (Antunes et al. 2013). When forecasting the risk of contamination (e.g. months 
ahead), it is mandatory to stress the importance of the future estimated values to exceed the 
maximum admissible values. The delineation of enriched zones requires the interpolation 
of content values to the nodes of a regular grid where a prediction model will work as guid-
ance to a more sustainable mining management. 

The new variables (F1 and F3) obtained by PCA are defined as regionalized variables and 
are additive by construction. Therefore, a two-step geostatistical modelling methodology 
was used as follows: 

1) Selected attributes (F1 and F3) went through structural analysis, and experimental vari-
ograms were computed (Fig. 5);
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2) The factors (F1 and F3) coordinates were transformed into normal scores to attenuate the 
impact of extreme values on the computation of the variogram. Multi-Gaussian kriging was 
then used aiming interpolation and proceeded: 1) normal score transforms of the F1 and F3 
data, 2) interpolation of normal scores using ordinary kriging, and 3) back-transform of the 
results using the empirical procedure developed by Saito and Goovaerts (2000) (Fig.5). For 
computation, the Space-Stat Software V. 4.0.18, Biomedware, was used.

Results and Discussion

Isotropic experimental variograms, for F1 and F3, were computed for structural characteri-
zation and spherical models fitted. Cross-validation results were considered satisfactory for 
the selected models, showing consistency between the calculated and the observed values. 
The graphic behavior of the variogram function provides an overview of the spatial variation 
structure of the variable (Chica, 2005). One of the parameters that provide such informa-
tion is the nugget effect, which shows the behavior at the origin (Pereira et al. 1993). The 
other two parameters are the sill and the range which defines, correspondingly, the inertia 
used in the interpolation process and the variable structure influence zone. For the consid-
ered new synthesis variables, 79% of the total inertia was used for F1 estimation and 72% 
for F3 estimation (Fig.5).

The spatial patterns shown allow to identify two enriched clusters: 1- Sn; Cu; As; Zn and Cd 
and 2- W and Mn (Fig. 6).

  (a)     (b)

Figure 5 Experimental variograms and fitted models: a) F1 normal scores and b) F3 normal scores

It is important to stress that the central area of the tailings dam is where it is observed the higher 
concentration in Sn and Cu and it is in its margins where W is mainly concentrated (Fig.5). 

Conclusions

In the herein study a set of 16 chemical elements, gathered in Cabeço do Pião have been 
used for characterization of the tailings dam’s enrichment characterization. In a first step a 
Principal Components Analysis (PCA) was directed to find the trace elements’ associations. 
In a second step a multilinear regression allowed to complete Cadmium missing values, 
using as independent variables Zn and Cu. A stochastic approach was performed through 
Multi-Gaussian kriging algorithm, and back-transform of the results. The central area of the 
tailings dam shows notable enrichment in Sn; Cu; As; Zn and Cd whereas it is in its margins 
where W and Mn content is more relevant. 
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a)                                   b)

Figure 6 a) F1 map created by multi-Gaussian kriging and b) F3 map created by multi-Gaussian 
kriging 

Future work must be extended out to explore new possibilities for the Cabeço do Pião tailing 
re-mining.
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