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Abstract
� e GLUE methodology sets a “likelihood measure” in advance of modelling. Random 
realisations of uncertain values and input parameters are drawn from appropriate dis-
tributions during multiple model simulations. If the model results conform to the likeli-
hood measure, the model is considered “behavioural”, that is, one of a set of models that 
can replicate real-world observations.

We apply the GLUE methodology to a two-component ensemble geochemical mod-
el of a coal discard facility and one-dimensional transport in the underlying shallow 
groundwater system. � e results indicate that our geochemical model was non-behav-
ioural, that is, could not give an acceptable reproduction of observations, even with 
rather relaxed rejection criteria. � is is probably due to the multitude of parameters 
required by the model.

� is exercise illustrates that GLUE can be helpful in evaluating model results. How-
ever, random sampling can give rise to unrealistic sets of model inputs. � ese can gen-
erate noise in model results that may obscure whether the model is behavioural or not.

Keywords: ICARD, IMWA, MWD 2018, PHREEQC, geochemical model, coal discard, 
GLUE, uncertainty estimation

Introduction 
Mine water management requires hydro-
logical, hydrogeological, and geochemical 
models. � ese models are frequently “cali-
brated” against � eld and/or laboratory mea-
surements. In general, agreement between 
the model and the observed measurements 
is considered an indicator that the model is 
a reasonable proxy for the system being con-
sidered. However, what constitutes “agree-
ment” between observed and simulated 
data, and what does “agreement” actually 
mean in terms of simulating the system? Ac-
tually, the calibration process tells us noth-
ing about whether the model is suitable for 
forecasting. 

Uncertainty estimation in geochemical 
models is challenging when there are data 
available to evaluate model performance. � e 
commonly-applied calibration approach can 
only be conditionally optimal as data errors 
will propagate through the model structure, 
which is itself a simpli� cation of the reality 
generating the observations (Beven 2009). 

� erefore, there may be several di� erent sets 
of parameters consistent with the data used 
for “calibration”. 

� ere are various statistical methods to 
address model optimisation including Bayes-
ian and Monte Carlo methods. � ese are 
commonly applied with modern computing 
tools and technologies. However, these meth-
ods assume we have the correct model struc-
ture and only need to � nd the optimal input 
parameters. Beven (2009) considered the 
shortcomings of the calibration process and 
formulated the General Uncertainty Likeli-
hood Estimation (GLUE) methodology as a 
means to provide more information on the 
suitability of a model for forecasting.

For any model there are many combina-
tions of input parameters that may produce 
simulation results consistent with observa-
tions. However, there is no single “true” mod-
el. GLUE is an approach to model calibration 
that allows for the e� ects of model structural 
and data errors. “Model conditioning” is the 
descriptor used by Beven to describe a pro-
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cess that tries to � nd only those models that 
are acceptable from a theoretical set of all 
possible models. 

� e GLUE methodology is summarised 
as follows (from Beven 2009):
1. Before running the model, decide on a 

likelihood measure in evaluating each 
model run, including rejection criteria for 
non-behavioural model

2. Decide which model parameters and in-
put variables are to be considered uncer-
tain

3. Decide on prior distributions from which 
those uncertain parameters and variables 
can be sampled

4. Decide on a method of generating ran-
dom realisations of models consistent 
with the assumptions in steps 1 and 2.

In this paper, we present the partial applica-
tion of GLUE to an ensemble geochemical 
model of a coal discard heap. GLUE can pro-
vide insights into model structure not pro-
vided by other optimisation methods. While 
GLUE has been previously applied to hydro-
geochemical models (eg. Zhang et al 2006), 
to our knowledge, it has not been applied to 
pyrite oxidation models.

Methods 
� e opportunity to apply the GLUE method-
ology arose while characterising a coal dis-
card facility for environmental permitting. 
� e facility is located in central Mpumalanga 
Province of South Africa. Satellite imagery 
(Google Earth) indicates the footprint topsoil 
was stripped during December 2007. Discard 
deposition commenced in January 2008.

Two boreholes “BH  Shallow” (11  m) 
and “BH  Deep” (30  m) monitor groundwa-
ter quality approximately 30  m downstream 
of the toe of the facility. � e available moni-
toring data extends from November 2008 to 
June 2015. Groundwater quality monitoring 
indicates contamination by acid seepage from 
the discard in BH Shallow, while groundwa-
ter quality in BH Deep has remained relative-
ly unimpacted (Figure 1). A marked increase 
in pH and decrease in sulphate concentration 
in early 2014 is considered anomalous.

Excluding the anomalous data, the shape 
of the monitored sulphate time series is remi-
niscent of a column breakthrough curve. � e 
work in this paper attempts to model the 
groundwater quality at BH Shallow using 
the one-dimensional transport capability of 
PHREEQC (Parkhurst and Appelo 2013).

A two-component ensemble model was 
developed. � e � rst component of the model 
simulated pore water quality due to sulphide 
oxidation in the coal discard using the rela-
tions of Williamson and Rimstidt (1994). 
Model parameters were determined from 
geochemical characterisation (Table  1) and 
physical characterisation of discard (Fig-
ure 2). 

� e second model component simulated 
one-dimensional transport in the shallow 
groundwater aquifer. � e local hydrogeology 
consists of Karoo Sequence sedimentary units, 
including shaly sandstones and siltstones. BH 
Shallow samples groundwater in the weath-
ered zone aquifer, while BH Deep is screened 
in the fractured zone aquifer. Groundwater ve-
locity in the shallow aquifer, based on the data 
in Table 2, is 1.4 to 4.1×10–7 m/s.

Figure 1 Groundwater quality monitored downstream of discard.
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Applying Step 1 of the GLUE methodol-
ogy to the � rst model component, the model 
results were “acceptable” if simulated pH at 
any time step was less than observed pH and 
if simulated SO4 was higher than observed 
SO4 at any step.

For the second model component an ar-
bitrary likelihood measure of 80% of simu-
lation results within one standard deviation 
was selected. � at is, if 80% of the simulation 
results were within the � eld de� ned by one 
standard deviation of the mean parameter 
value (pH and SO4), and one standard devia-
tion of the mean period between successive 
monitoring events, the run would be consid-
ered “successful”.

� irteen parameters/variables considered 
uncertain in the � rst model component were 
given prior distributions based on sample re-
sults, as indicated in Table  3. Table  4 shows 
eleven parameters/variables for the second 
model component. � is comprised Steps 2 
and 3 of the GLUE methodology.

For Step 4 of the methodology, one hun-
dred repetitions of the ensemble model 
were run using a Python 33 module and the 
IPHREEQC module (Charlton and Parkhurst 
2011) called by the PhreeqPy method (Müller 
2013). For each repetition, the Python code 
randomly selected values for each parameter 
from the relevant distribution and wrote the 
values to the PHREEQC input � le, which was 
then executed using PhreeqPy to call IPHRE-
EQC.

Results
For the � rst model component, simulated 
pH in the discard pore water was lower than 
observed pH at BH Shallow. However, simu-
lated SO4 was only higher than observed SO4 
in 9 out of 100 simulations (Figure 3).

� e “acceptable” model results from the 
� rst model component were applied in the 
second model component. � e model was 
run beyond the available observations to pre-
dict future groundwater quality at BH Shal-
low (Figure 4). � e simulated time series of 
pH and SO4 bear some similarity to the real-
world observations. However, the simulated 
pH values generally do not meet the criteria 
for a behavioural model, while the simulated 
sulphate values do. � e prediction suggests 

Table 1 Geochemical characterisation of coal discard.
Parameter Unit Value Comment

Bulk density kg/L 1.211 Mean of compacted bulk densities of three samples

Porosity L/L 0.26 Estimated from particle size distribution

Pyrite wt% 2.92 XRD on composite of three samples

Calcite wt% 1.66 XRD on composite of three samples

Siderite wt% 3.23 XRD on composite of three samples

Gypsum wt% -- not detected in sample

Particle density kg/L 2.55 Calculated from mineralogy data

Porosity L/L 0.48 Calculated from bulk density and particle size

Moisture content wt% 48 Mean of three samples 

Discard particle area m²/kg 30.12 Estimated from particle size distribution

Figure 2 Particle size distribution of discard.
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Particle size distribution Table 2 Hydrogeology at coal discard facility.
Aquifer Depth Estimated K Estimated 

porosity

Weathered 
zone

±10 0.044 – 0.155 3%

Fractured 
zone

>10 0.015 – 0.04 0.4%
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Table 3 Uncertain model input parameters and values and the assumed distributions for the � rst model 
component (discard pore water quality).

Parameter/ variable Unit Distribution Distribution parametersA Comment

Initial pyrite mol Triangular 0.04, 0.15, 0.35 Range of XRD

Pyrite log A/V Triangular -0.94, -0.28, 0.1 Calculated (3 samples)

Initial pore water:

pH pH unit Triangular 8.0, 8.1, 8.3 Range of leach tests

Al mg/L Triangular 0.021, 0.032, 0.051 Range of leach tests

Alkalinity mg/L as CaCO3 Triangular 28, 51, 64 Range of leach tests

Ca mg/L Triangular 41, 60, 95 Range of leach tests

Cl mg/L Triangular 3, 5, 6 Range of leach tests

Fe mg/L Triangular 0.064, 0.110, 0.199 Range of leach tests

K mg/L Triangular 6.0, 7.1, 8.9 Range of leach tests

Mg mg/L Triangular 10, 15, 25 Range of leach tests

Mn mg/L Triangular 0.046, 0.086, 0.158 Range of leach tests

Na mg/L Triangular 8, 10, 15 Range of leach tests

SO4 mg/L Triangular 100, 155, 264 Range of leach tests

A Left limit, mode, right limit

Table 4 Uncertain model input parameters and values and the assumed distributions for the second model 
component (one-dimensional transport).

Parameter/ variable Unit Distribution Distribution 
parametersA

Comment

Background groundwater:

pH pH unit Normal 7.6, 0.503

All distributions determined 
from 63 analyses of 

groundwater from several 
years of monitoring data 

Al mg/L Lognormal -1.98, 0.781

Alkalinity mg/L as CaCO3 Normal 142, 50

Ca mg/L Normal 22.7, 11.15

Cl mg/L Normal 16.2, 6.632

Fe mg/L Lognormal -1.74, 1.500

K mg/L Normal 1.63, 0.549

Mg mg/L Normal 10.8, 4.492

Mn mg/L Lognormal -1.84, 1.012

Na mg/L Normal 22.3, 7.516

SO4 mg/L Lognormal 1.73, 0.299

A Mean, standard deviation

that SO4 concentrations will continue to in-
crease.

Discussion
� e results of this application of GLUE to a 
geochemical model highlight several advan-
tages and disadvantages of the methodology.

First, the criteria for acceptability or “like-
lihood measure” could have been more care-
fully selected. Figure 4 shows that the pH and 
SO4 concentration of the source were too low 

to correspond well with observed values. In 
fact, the one-dimensional transport model 
results skirt the lower boundary of the “ac-
ceptable” � eld. More rigorous criteria for the 
� rst model component may have avoided this 
issue. 

A challenging aspect of geochemical 
models is the large number of variables. If 
likelihood measures are set for several out-
put variables, a condition may arise, as in our 
coal discard example, in which one output 
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variable indicates a behavioural model (SO4 
in this case), while another may not (pH in 
this case). 

Second, and related to the above, the 
veracity of the discard pore water model 
component is called into question. Several 
possibly signi� cant factors may have been ex-
cluded from the model, for example, a bu� er-
ing mechanism resulting in a higher pH than 
modelled. Also, initial SO4 concentrations in 
discard pore water were estimated from leach 
test results and did not consider evaporative 
concentration. 

� ird, the selection of uncertain param-
eters. Background groundwater concentra-
tions were randomised in the one-dimen-
sional transport model. However, the impact 
of this randomisation is only seen in the � rst 
200 weeks of pH in Figure 4. � erea� er, the 
source concentrations appear to dominate 
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the results. If other parameters were selected 
for random realisations, for example, ground-
water velocity or dispersivity, the model re-
sults may have included more behavioural 
outcomes.

� e above points may arise from the 
non-independence of model input variables. 
� erefore, random sampling from probability 
distributions can generate unrealistic sets of 
model inputs. � ese can generate “noise” in 
the model output, which may obscure useful 
results. 

Last, development of this ensemble model 
was made possible with modern program-
ming tools and techniques. However, the pro-
cess was lengthy and complex as it required 
writing a custom code for the ensemble mod-
el. Multiple model simulations generate thou-
sands of data points, which require extensive 
visualisation and interpretation. 

Figure 3 Results of 100 simulations of discard pore water.
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Figure 4 Results of 100 simulations of one-dimensional transport. Grey lines indicate ±one standard devia-
tion from observed values. 
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Conclusions
� e results indicate that our discard facil-
ity geochemical model was non-behavioural, 
that is, could not give an acceptable repro-
duction of observations, even with rather 
relaxed rejection criteria. � is is probably 
due to the multitude of parameters required 
by the model, i.e. the model is probably too 
complex.

Selecting a likelihood measure is a criti-
cal aspect of the analysis. How closely should 
model results reproduce observations? 
Within one standard deviation of observed 
values seems reasonable given the uncertain-
ties of geochemical and groundwater model-
ling. Rather than the wrong likelihood mea-
sure, it appears from this example, that the 
wrong model parameters and input variables 
were considered uncertain (eg. Background 
groundwater quality). Better results may have 
been obtained by considering variability in 
the pore water quality model.

� e GLUE methodology, while somewhat 
cumbersome to implement, can deliver addi-
tional insight to the validity of geochemical 
models. Some form of � lter is required for 
model inputs generated by random sampling 
to reduce “noise” in the output.
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