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Abstract
A linear and nonlinear statistic approach was chosen to develop a risk assessment 
predicting the groundwater pollution potential and SO4 concentrations considering 
twelve environmental and spatial variables at an industrial and coal mining complex. 
Linear regression models and nonlinear classification and regression trees indicated 
that the explanatory variables lnWLDepth and vadose zone were most significant in 
predicting the potential pollution risk and SO4 values. Tree models were able to identify 
additional correlations between SO4 and distance to pollution, fault and stream as they 
recognize nonlinear relationships, and were found to be useful visual tools to develop a 
site-specific risk assessment. 
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Introduction 
Mine waste facilities are often substantial 
sources of diffuse and point pollution which 
affects the water quality of the surrounding 
environment (Morin and Hutt, 2001). 
Groundwater monitoring is limited at these 
sites due to financial constraints and the 
possibility of creating unnecessary pathways 
between the pollution source and the aquifer 
due to drilling. This results in incomplete 
data sets and expensive monitoring programs 
(Babiker et al. 2005). Therefore, risk 
assessments have become helpful tools and 
are widely used to delineate areas that are 
more prone to groundwater pollution due 
to anthropogenic activities (Babiker et al. 
2005; Kazakis and Voudouris 2015). Once 
vulnerable areas have been identified, they 
can be targeted with refined monitoring 
programs and individual remediation or 
prevention techniques (Babiker et al. 2005).  

A widely accepted aquifer vulnerability 
assessment is the DRASTIC method which 
has been studied in a combination of 
various statistical approaches (eg. Huan 
et al. 2018; Kazakis and Voudouris 2015; 
Khosravi et al. 2017). It is a deterministic 
approach using order and ranking to evaluate 
multiple options with specific variables that 
are not measured but classified according 

to a rank. This method incorporates the 
major hydrogeological factors affecting 
and controlling groundwater movement 
including Depth to water table, net Recharge, 
Aquifer media, Soil media, Topography, 
Effect of the vadose zone and hydraulic 
Conductivity of the aquifer (Aller et al. 1985). 
However, the DRATIC method is not suitable 
to predict aquifer vulnerability for small, 
relatively homogenous areas as DRASTIC 
is designed to assess different locations with 
spatially variable phenomena (Babiker et 
al. 2005). Therefore, this study considers an 
alternative approach employing simple linear 
models and regression and classification trees 
which can deal with nonlinear relationships 
and high-order interactions of complex data 
(De’Ath and Fabricius 2000).

The aquifers of investigation form part 
of the Karoo Supergroup located in the 
north-eastern portion of the Karoo Basin, 
South Africa. At the study site, seepage from 
different types of discard dumps containing 
waste rock and by-products from a coal 
mining and power station facility and mine 
water storage dams, typically contain elevated 
sulfate concentrations. High sulfate levels 
were detected in the local shallow weathered 
and deeper fractured aquifer near such mine 
waste storage facilities and local streams. 
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These sulphate levels exceed both the South 
African Drinking Water Standard and water 
use license requirements of 200 and 134 mg/L 
SO4, respectively. 

This study aimed to develop a risk 
assessment by employing a linear and 
nonlinear statistic approach to predict a) 
groundwater pollution risk by SO4 and b) SO4 
concentrations in areas without monitoring 
boreholes based on environmental and 
spatial variables. This would aid in the 
decision making of the mining and industrial 
complex to be able to comply to the water use 
licence and to protect the local ground- and 
surface water quality. In addition, the site of 
investigation was divided into a control and 
study site involving a fine coal discard dump. 
A statistic model should determine whether 
measured elevated SO4 concentrations were a 
result of seepage from the discard dump or 
were to be expected in the area even in the 
absence of the discard dump. 

Methodology 
Study site
The industrial and coal mining complex 
has an approximate size of 209  km2 and is 
located in the Mpumalanga Province, South 
Africa. This area forms part of the north-
eastern section of the Karoo Basin and is 
composed of upward-coarsening cycles of 
siltstone, mudstone, immature sandstone, 
carbonaceous shale and coal seams of the 
Permian Vryheid Formation of the Ecca 
Group (Johnson et al. 2006). Locally, the 
formation was intruded by late Karoo sub-
horizontal dolerite sills with a thickness 
ranging between 30 and 60 m (Hulley 2013). 
Several faults were mapped in the area during 
mining activities, which form part of a larger 
graben structure with a displacement ranging 
from 22 to 55  m (Hulley 2013; pers. com. 
Vermeulen 2015).

Two aquifers control the geohydrological 
setting, an unconfined shallow weathered 
and deeper semi-confined fractured Ecca 
aquifer (Grobbelaar 2001) with an average 
yield of 0.6 and 0.2  l/s, respectively (King 
2003). Although these aquifers are relatively 
low yielding, bedding planes and secondary 
structures such as fractures, fissures and 
faults may form preferential flow paths that 

would allow seepage from the mine waste 
storage facilities to reach the aquifer system. 

Data acquisition
Data were obtained from boreholes forming 
part of a continuous monitoring program. 
Sulfate was treated as the response variable, as 
it was determined to be the major pollution 
culprit at the study site. The explanatory 
variables were based on the DRASTIC model 
(Aller et al. 1985), but parameter R was 
excluded, since only one value was assigned 
to the relatively small study area, making it 
statistically irrelevant.

In addition, distance to nearest pollution, 
study dump, pollution excluding study 
dump, fault, stream and electrical resistivity 
tomography (ERT) were considered as 
explanatory variables (Tab.1). For SO4 and 
depth to water level, the latest value was used. 
The slope % was calculated for small sections 
of the study site according to Freeze and 
Cherry (1979), utilizing the coordinates and 
elevation of three boreholes at a time. The 
hydraulic conductivity was obtained from a 
hydrogeological model constructed for the 
area (IGS Report No. 01/2018/AA). Distances 
from boreholes to potential pollution sources 
were calculated using the middle point of 
each source. Distances to streams and faults 
were measured in intervals by constructing 
buffer zones of 10, 50, 100 and 500 m around 
the linear features. Observations with missing 
SO4 data were excluded from the analysis as 
the remaining information of the dependent 
variable did not add any value to the statistical 
model. 

Statistical analysis
Different statistical model approaches 
were chosen to explore relationships 
between the variables and to predict 1) the 
probability of high (SO4>134  mg/L) and 
low risk (SO4<134  mg/L) of groundwater 
pollution, and 2) the sulfate concentration 
in the groundwater based on the given 
environmental parameters. Seventy percent 
of the data set was randomly split into a 
training sample and the remaining 30% 
were used as control sample to validate the 
statistical model. Variables SO4, K, WLDepth, 
DistPol, DistToDump and DistWithout were 
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transformed to the natural log scale due to 
high variations in minimum and maximum 
values. All statistic methods were run with 
the freely available software R version 3.4.2 
(The R Foundation for Statistical Computing 
2017).

At first, a logistic regression model was 
implemented with the dependent variable 
SO4 posing a high (>134  mg/L) or low risk 
(<134  mg/L), based on the water quality 
objectives of the water use license. The 
control sample set excluded data from 
artesian boreholes. An iterative approach 
was applied to find combinations of factors 
that explain the risk of elevated SO4 ranging 
from including all to none of the explanatory 
variables (Tab.  1). The different models 
were compared by means of the Bayesian 
Information Criterion (BIC) to try and 
balance the accuracy of the model fit against 
the model complexity. 

As a next step, a linear regression model 
was developed to predict future SO4 values 
using the natural log (due to a wide range of 
values) and a normal distribution. Similarly, 

to the logistic regression, an iterative approach 
was applied using a combination of factors. 
The models were then fitted against the log of 
SO4 with a significance level of 0.05 (P=0.05) 
to determine the most applicable model.

Classification and regression trees were 
applied to fit non-linear models by means 
of decision trees that try to maximally 
differentiate the sample with each succeeding 
split in a branch. Regression and classification 
tress are useful tools when dealing with 
nonlinear relationships and high-order 
interactions of complex data sets (De’Ath and 
Fabricius 2000). Splitting of tree branches was 
performed with the aid of the Gini index for 
the classification tree, and with the ANOVA 
method (sums of squares) for the regression 
tree. Other than the previous models, all 
variables were included to populate the trees. 
The trees were then pruned utilising the 
default complexity parameter (CP) method. 

As final approach, a robust regression 
model was utilized to try and predict 
the natural log of SO4 (lnSO4) based on 
the observed sulfate measurement of the 

Table 1 Description of the study variables; the type of variable is denoted by N=numeric or C=categorical; 
materials are denoted by ss=sandstone, BKFL=backfill, mudst=mudstone. 

Variable Short name Type Value (min. and max. range)

SO4 concentration (mg/L) SO4 N 0.25-31071

Distance to pollution (m) DistPol N 88-14393

Distance to study dump (m) DistToDump N 224-2939244

Distance to closest pollution  
without study dump (m)

DistWithout N 88-2935399

Depth to water level (m) WLDepth N 0-108

Aquifer geology Aquifer C bedded shale/ss/mudst, BKFL, dolerite, dolerite 
weathered

Soil Soil C absent, BKFL, clay, clay loam, gravel, loam, sand, 
sandy loam

Vadose zone Vadose C bedded shale/ss/mudst, BKFL, dolerite, dolerite 
weathered, clay, siltstone

Hydraulic conductivity (m/d) K N 0.05 (discard dump), 0.14 (weathered aquifer),  
14 (conductive area), 85 (fault)

Slope % Slope N 0-3

Distance to fault (m) Fault N 0-12308

Distance to stream (m) Stream N 0-4000

ERT (Ωm) ERT N 1.8-96
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trainings sample. It differs from the linear 
regression, that samples with a depth to water 
level between 0 and 0.14  m were included. 
A Bayesian framework was employed with a 
student -t distribution as it is more robust to 
outliers but more difficult to fit. 

Results and discussion
Predicting sulfate concentrations with 
linear functions 
Results of the logistic regression model 
indicated that simple models including only 
the significant variables were preferred. 
Based on the BIC value (393.26), the second 
logistic regression model was the most 
favourable with only the two explanatory 
variables vadose zone and lnWLDepth 
being statistically significant (for P<0.05). 
The resulting linear formula is Y≈ -0.4868× 
lnWLDepth+0.0695 (add -2.0739 of 
vadose=clay, 1.4054 if vadose=dolerite and 
1.4957 if vadose=dolerite weathered).

Similar to the logistic regression model, 
the linear regression model considered the two 
variables vadose zone and lnWLDepth to be 
statistically most significant. According to the 
lowest BIC value, the model that could most 
reliably predict future sulfate concentrations 
is SO4≈ e-0.458×lnWLDepth + 4.919 (but add to 4.919 a) 
-2.804 if the vadose zone=clay, b) 1.137 if the 
vadose zone=dolerite, or c) 1.22 if the vadose 
zone=dolerite weathered). This prediction 
is based on the control sample given that the 
water level is below the surface (not artesian). 
Considering the control and study area around 
the discard dump, the model suggested that 
the study area has a generally higher SO4 
concentration with an increase factor of 95.5% 
than predicted by the control area.

For the robust regression model, the same 
linear model was fitted using a Bayesian 
framework with a more robust student-t 
distribution including artesian borehole 
measurements. The resulting formula for 
the model with the best fit predicting future 
sulfate concentrations was SO4≈ e-0.334×lnWLDepth, 
adding a) 4.782 to the exponent if the vadose 
zone is composed of shale, b) 2.007 for clay, 
c) 5.834 for dolerite or d) 6.045 for weathered 
dolerite. This model proposed that the study 
area has a generally higher SO4 concentration 
with an increase factor of 88.3% compared to 

the predictions of the control area.
All linear model approaches were 

consistent in that they only considered the 
two explanatory variables depth to water level 
(as natural log) and vadose zone as the major 
environmental factors that control the risk of 
sulfate pollution at the investigated site. Both 
linear and robust regression formulas showed 
similar results for the prediction of future 
sulfate concentrations in the control area. 
Furthermore, both models indicated that the 
observed sulfate concentrations in the study 
area were much higher than predicted for 
the control area. This suggests that there are 
additional environmental factors that were 
not considered in the model influencing the 
sulfate concentration in the groundwater. 
For example, the study site contains a 
backfilled area, wetlands and some observed 
groundwater flow paths at depth, possibly due 
to anthropogenic alterations of the geology 
caused by undermining which could play a 
role in the SO4 distribution. It was surprising 
that the distance to the closest pollution point 
statistically did not have a significant effect on 
the sulfate concentration in the groundwater, 
although the sulfate distribution suggested 
otherwise. Boreholes closest to the tailings 
dumps and mine water dams had the 
highest sulfate concentrations. It is therefore 
recommended to revisit the methodology on 
how the distance of boreholes to the closest 
pollution source was calculated. 

Risk evaluation and sulfate prediction 
with nonlinear functions
Nonlinear regression and classification trees 
were applied to relate SO4 concentrations to 
spatial and physical environmental variables 
and to predict SO4 concentrations as well 
as the risk of groundwater pollution by SO4 
(>134  mg/L) based on a random training 
sample. The regression tree was overfitting 
using all variables, but showed better results 
considering only the variables lnWLDepth, 
vadose zone and distance to pollution, fault, 
and stream (Fig. 1A). According to the 
splitting of branches, the variable lnWLDepth 
was most significant to determine the risk of 
sulfate pollution for both the regression and 
classification tree, followed by the vadose 
zone (Fig.  1). This corresponds with the 



IMWA 2019 “Mine Water: Technological and Ecological Challenges”

715Wolkersdorfer, Ch.; Khayrulina, E.; Polyakova, S.; Bogush, A. (Editors)

findings of the linear regression models. 
In the regression tree, distance to pollution 

was also considered as a significant variable, 
followed by distance to fault and stream 
(Fig.  1A). Although the regression tree was 
able to model complex data to determine 
environmental characteristic associated with 
SO4 groundwater distribution, it showed 
discrepancies when trying to explain the 
distance to pollution with SO4 concentrations. 
For example, it could not reasonably 
explain an elevated SO4 concentration at a 
distance to pollution≥3681  m compared to 
a shorter distance to pollution with lower 
SO4 concentration. This contradicts the field 
observations and could be explained by either 
additional factors that were not considered in 
this risk assessment or due to inconsistencies 
in the data set. 

Other than the regression tree, the 
classification tree also considered the soil 
type to be a significant branch to distinguish 
between high and low pollution risks of 
SO4 but did not include distance to stream 
(Fig.  1B). Like the regression tree, one 
branch split indicated that a low SO4 risk is 

expected for distances closer to the pollution 
source compared to distances further away 
(>1039  m) which disagrees with the field 
observations and could be related to other 
factors not being considered in the risk 
assessment. Overall, the regression and 
classification trees were a useful and visual 
tool to predict SO4 concentrations and 
potential risk of SO4 pollution for unknown 
areas in the field. Furthermore, this nonlinear 
approach was able to identify additional 
relationships between variables which were 
not addressed with linear functions due to 
the complexity of the data.

Conclusions
Sulfate predictions and groundwater 
pollution risk were assessed with linear 
and nonlinear functions to determine the 
environmental and spatial relationships 
with SO4 at an industrial and mining site. 
All statistical approaches indicated that the 
explanatory variables lnWLDepth and vadose 
zone were most significant in predicting 
the potential pollution risk and future SO4 
values. No relationship was found between 

Figure 1 Regression (A) and classification tree (B) of a random training sample with SO4 as dependent 
variable, SO4 predictions expressed as natural log; vadose zone materials are denoted as bs=bedded shale, 
sandstone, mudstone, cly=clay, dlr=dolerite, dlw=dolerite weathered; soil types are denoted as cly=clay, 
art=artificial, cll=clay loam, snl=sandy loam.
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the dependent variable SO4 and the response 
variables ERT, slope%, hydraulic conductivity 
and aquifer geology. This can be explained by a 
limited ERT data set and a small data range of 
the remaining response variables. The simple 
linear and robust regression model showed 
that the study area around the discard dump 
had a generally higher SO4 concentration 
than predicted by the control area with a 
factor of 95.5 and 88.3%, respectively. This 
could be caused by additional environmental 
factors not being considered for the study 
site such as a backfilled area, wetlands and 
groundwater flow paths possibly related to 
underground mining activities. Compared 
to the logistic and linear regression analysis, 
regression and classification tress were able to 
identify additional relationships between SO4 
and distance to pollution, fault and stream 
as they consider nonlinear relationships 
and high-order interactions of complex data 
sets. Regression and classification trees also 
provided a useful visual tool to predict SO4 
for areas not tested at the study site and to 
evaluate the pollution potential of the aquifer. 
It is recommended to re-evaluate the method 
applied to determine the distance of boreholes 
to closest pollution points as no relationship 
was determined with the linear regression 
models, although the field observations 
suggested otherwise.
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