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Abstract
The determination of parameters controlling the oxidation kinetics of manganese (Mn) 
during passive treatment is essential to improve the management of mine drainage 
water treatment. Mn removal processes are mainly driven by microorganisms, but 
the conditions controlling Mn removal efficiency have not been elucidated yet. To 
distinguish the factors associated with Mn removal efficiency, the surface water of a 
passive treatment plant composed of Phragmite-wetlands was monitored for one year. 
It has been observed that the Mn removal efficiency vary with the concentration of 
suspended iron particles and the water temperature. 
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Introduction 
France, like many other countries, faces 
environmental and long-term management 
challenges caused by mine drainage waters 
as a result of historical coal mining activities. 
Thus, passive water treatment plants have 
been designed to remove manganese (Mn) 
from mine drainage water before discharge 
into natural water bodies (Neculita and 
Rosa 2019). A treatment plant composed of 
constructed aerobic wetlands systems, located 
in Alès (South-East France), aims to remove 
Mn and iron (Fe) from a neutral coal mine 
drainage water. In these systems, dissolved 
Mn is oxidised and precipitates as Mn(III/IV) 
minerals. During passive treatment of neutral 
mine drainage water, it is now well established 
that the processes governing Mn oxidation 
are mainly controlled by biological processes 
and autocatalytic mechanisms (Skousen et 
al. 2017). Previous studies have highlighted 
the difficulties to remove Mn during passive 
treatment (Watzlaf et al. 2004). Indeed, 
Mn removal efficiency is highly variable, 
depending on mine drainage water chemistry 
and passive treatment configuration 
(Hallberg and Johnson 2005; Batty et al. 
2005; Bamforth et al. 2006; Tan et al. 2010; 
Le Bourre et al. 2020; Jacob et al. 2022). In 
this context, the present study aims to specify 

the factors influencing Mn oxidation kinetics 
by a one-year monitoring programme of 
the temporal evolution of geochemical and 
physical-chemical parameters at a coal-mine 
water treatment plant. 

Methods
The studied passive water treatment plant 
is located in Alès (South-East France). It is 
composed of aerobics wetlands for Mn and 
Fe removal. It includes a six-step oxygenation 
cascade, a settling pond of 2400 m2 with a 
depth of 6 m and three Phragmite-planted 
wetlands of 1540 m2, 1480 m2 and 1750 m2, 
respectively (Fig. 1). Mine drainage water is 
pumped from the old coal mining galleries 
and injected at the inlet of the water treatment 
plant at an average flow rate of 105.9 ±  
3.3 m3.h-1. The mine drainage water is mainly 
composed of sulphate, carbonate and of Fe 
and Mn which are the targets contaminants. 

From march 2022 to February 2023, 
surface waters of the passive treatment plant 
were sampled and analysed for their chemical 
composition every two months. In order to 
determine the Mn and Fe removal efficiency 
of process unit, water samples were collected 
at different points through the treatment 
plant (Fig. 1). Sampling was carried out 
from the less contaminated point to the most 
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contaminated point (i.e. from the station 
outlet to the station inlet). Filtered (0.45 
µm, cellulose acetate filters, Sartorius) and 
unfiltered fraction of the surface water was 
sampled for each point. Vacuum-filtration 
was done onsite with a Nalgene filtration 
unit. For dissolved and total major ions 
analysis, aliquots of filtered and non-filtered 
water were acidified with nitric acid (HNO3 
0.1 M). For Fe(II) measurement, an aliquot of 
filter water was acidified with concentrated 
hydrochloric acid (HCl) (Kirby et al. 1999). 
Unfiltered water was kept for the titration 
of alkalinity. Filtration blanks were done 
onsite with MilliQ water for each measured 
parameter. Samples were stored at 4°C until 
analysis. The physicochemical parameters 
(temperature (T), pH, redox potential (ORP), 
dissolved O2 (DO) and electrical conductivity 
(EC)) of all sampled waters were measured 
onsite with field WTW® 3430.

Bulk concentrations of dissolved and total 
major elements (Ca, Mg, Na, K, Mn, Fe, Al, 
P and Zn) of sampled surface water were 
determined by ICP-OES (SPECTROGREEN, 
SPECTRO Analytical Instruments). 
Quality control solution containing multi-
element were used to assess accuracy and 
reproducibility of the analytical method. 
Dissolved Fe(II) concentrations were 
measured by 1,10-phenanthroline method 
described by Kirby et al. (1999). Alkalinity 
measurements were performed using HCl 0.1 
M titration according to the standard Gran 
method (Gran 1952). Removal efficiency 

calculation was done using Eq. 1. Total Mn 
concentration at the inlet and at the outlet of 
the passive treatment plant was consider to 
calculate the total removal efficiency of the 
treatment plant. 
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(Eq.	1)	

A	principal	 component	 analysis	 (PCA)	was	performed	 to	 highlight	 the	 factors	 involved	 in	Mn	 removal	
efficiency.	 Data	 from	 all	 the	 sampling	 campaigns	 were	 used.	 Physicochemical	 parameters	 and	 water	
composition	(i.e.	T,	pH,	ORP,	DO,	EC,	dissolved	Mn,	dissolved	Fe,	total	Fe	concentrations	and	alkalinity)	
were	selected	to	carried	out	PCA.	Total	major	ions	results	from	some	sampling	points	(Wetland	1	in	June	
2022	 and	 Wetland	 2	 in	 April	 and	 June	 2022)	 have	 been	 excluded	 due	 to	 an	 overestimation	 of	 the	
concentration	caused	by	resuspension	of	sediment	during	sampling.	This	analysis	was	performed	by	R	
software	using	the	FactoMineR	package.		

Results	
Physicochemical	 parameters	 (T,	 pH,	 ORP,	 DO	 and	 EC)	 were	 measured	 at	 each	 sampling	 point	 and	 at	
every	 sampling	 campaign.	 At	 the	 pumping	 sample	 point	 (inlet,	 Fig.	 1),	 the	water	 showed	 a	 stable	 pH	
around	 6.5,	 dissolved	 O2	 at	 0	 mg.L-1,	 redox	 potential	 values	 between	 -35.4	 mV	 and	 -67.8	 mV	 and	
temperature	 values	 between	 22.2	 °C	 to	 24.6	 °C.	 Along	 the	 passive	 treatment	 plant,	 these	 parameters	
increased	up	to	a	pH	around	8	and	positives	values	of	O2	and	ORP	were	found.	In	the	wetlands,	the	water	
temperature	was	found	to	vary	with	the	seasons.	The	highest	temperatures	were	recorded	in	June	and	
August,	with	 an	 average	 value	 of	 25	 °C.	 The	 lowest	 temperatures	were	 recorded	 in	December,	with	 a	
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Figure 1 Sampling locations in the studied passive treatment plant, Wetlands 1, 2 and 3 are composed of 
Phragmite plants (image: F. Duré, BRGM).
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°C. Along the passive treatment plant, these 
parameters increased up to a pH around 8 
and positives values of O2 and ORP were 
found. In the wetlands, the water temperature 
was found to vary with the seasons. The 
highest temperatures were recorded in June 
and August, with an average value of 25 °C. 
The lowest temperatures were recorded in 
December, with a value of 15 °C. It should be 
taken into account that the measured surface 
water temperatures depend on the sampling 
time, which is not representative of the 
temperature evolution during the day.
Mn and Fe concentrations decrease in surface 
water during the treatment process (Fig. 2, 
D). These concentrations have been shown to 
vary with sampling campaigns season time. 
Significant decreases in Mn concentration 
across all wetlands are observed in April, 
June and February. In August, October and 
December, Mn only shows a significant 
decrease of its concentration in the last 
wetland (Wetland 3 and End Wetland 3, 
see Fig. 2, D). Mn removal efficiency was 
calculated considering Mn inlet and outlet 
concentrations (Eq. 1). As shown in Figure 
2, the highest Mn removal efficiency was 
around 92% in June and at its lowest value 
(43%) in December. Fe was characterized by 

its dissolved and total content. At all sampling 
campaigns, dissolved Fe concentrations 
are significantly low after passing through 
the settling pond, generally found under  
0.2 mg.L-1 (Fig. 2, A and B). In contrast, total 
Fe concentrations are gradually decreasing 
through the wetlands (Fig. 2, C). It decreases 
with average concentrations going to 9.43 ± 
3.37 mg.L-1 to 0.57 ± 0.62 mg.L-1. In wetlands, 
because dissolved Fe concentrations are 
significatively low, total Fe can be consider 
as Fe particles larger than 0.45 µm. For 
this parameter, missing data occurs due to 
concentration overestimation caused by 
sediment remobilisation during sampling.

PCA results, presented in Fig. 3, show 
74.67% of the total inertia of the dataset, 
allowing to observe most of the variability of 
it (i.e. 60.66% for dimension 1 and 14.01% 
for dimension 2). The graph of variables 
can be divided in four mains clusters (Fig. 
3, A). Cluster 1 is composed of DO, pH and 
ORP. The second includes Fe and total Fe 
concentrations. The third one is associated 
to alkalinity and Mn concentration. Cluster 
4 is represented by EC and temperature. 
Figure 3 allows to observe correlated and 
anticorrelated parameters during passive 
treatment of mine drainage water. The first 

Figure 2 Evolution of (A) dissolved Fe(II), (B) dissolved Fe, (C) total Fe and (D) dissolved Mn concentrations 
in surface mine water through the studied passive treatment plant (M refers to missing data).
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interesting observation is the anticorrelation 
of Fe, Total Fe, alkalinity, Mn, Temperature 
and EC parameters compared to the pH, 
DO (25°C) and ORP parameters according 
to dimension 1. It represents the differences 
comparing physicochemical characteristics 
of inlet water and the outlet treated water, 
which is illustrated by sampling points 
qualitative variables (Fig. 3, B). The sampling 
dates, added as a qualitative supplementary 
variable (Fig. 3, B), expose the seasonal 
effects on water physiochemistry. It shows 
similarities in water chemistry when 
comparing sampling time. Two main 
groups are distinguished, on one hand, the 
sampling campaigns of April 2022, June 
2022 and August 2022 and on the other 
hand the sampling campaigns of October 
2022, December 2022 and February 2023.

Discussion
The design of aerobic wetland for passive 
water treatment is largely dependent 
on the mine drainage pH and on the 
concentration of contaminants which is 
affected by the geology of the mine site. It 
is especially valid for Mn removal which is 
particularly dependent on Fe water content 
(Calugaru et al. 2021). Furthermore, the 
poor understanding of the mechanisms 
and factors controlling manganese removal 
is an obstacle to define design criteria for 
treatment plants (Neculita and Rosa 2019). 
Therefore, Mn removal effectiveness can be 
highly variable comparing treatment plants 
(Hallberg and Johnson 2005; Lesley et al. 
2008; Tan et al. 2010; Jacob et al. 2022). The 

discussion below relates some parameters 
impacting the elimination of Mn in a passive 
water treatment plant to better understand 
variations in Mn removal efficiency. 

The water DO, pH and ORP increase all 
along the plant, creating optimal conditions 
for Fe oxidation. For Mn abiotic oxidation 
optimal parameters are not reached during 
passive treatment process. In this kind of 
systems, biotic oxidation processes most 
likely control Mn oxidation. But in these 
environments, the optimal conditions 
for biotic Mn removal remain unknown. 
Our results show that manganese removal 
efficiency decreases with temperature, from 
high temperature conditions in June to lower 
temperature conditions in December (Fig. 
2). The biological oxidising activity of Mn is 
probably controlled by temperature seasonal 
variations. Previous studies have shown 
that some microorganisms were able to 
oxidise Mn at temperatures similar to those 
recorded in June (Neculita and Rosa 2019). 
Recent studies, carried out in laboratories, 
have observed Mn oxidation processes by 
microorganisms at different temperatures. 
Yu and Leadbetter (2020) observed an 
optimal Mn oxidation at temperatures 
ranging between 34 °C and 40 °C. This result 
was in line with those reported by Boogerd 
and de Vrind (1987), who have studied 
especially manganese oxidation by Leptothrix 
discophora. But as described by Neculita and 
Rosa (2019), several laboratories experiments 
have observed microbial communities that 
can efficiently contribute to Mn oxidation 
at temperature as low as 4°C. Studies of real 

Figure 3 Principal Component Analyses (PCA) based on water physicochemical variables (pH, T, EC, ORP 
and DO corrected at 25 °C, dissolved Mn (Mn), dissolved Fe (Fe), total Fe (Tot Fe) concentrations and 
alkalinity), (A) Graphic of variables and (B) Graphic of individuals.
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constructed wetland for coal mine drainage 
water treatment have also brought diverse 
conclusions on temperature effect but have 
also consider other factors to explain removal 
variation such as pH, DO, alkalinity, nutrient 
availability (Ye et al. 2001). Temperature 
appears to be a key parameter affecting Mn 
removal efficiency by biotic process, indeed 
the activity and development of certain 
Mn-oxidising microbial communities seems 
temperature dependant.

The simultaneous presence of Fe and 
Mn in mine drainage water has already 
been reported as a limiting parameter for 
Mn removal during passive water treatment 
(Lesley et al. 2008). Indeed, it is well known 
that ferrous iron can reduce Mn oxidised 
forms (Liu et al. 2022). Our results shows 
that dissolved Fe and dissolved Fe(II) 
concentrations are close or under the limit 
of analytical detection at wetlands sampling 
points (Fig. 2). In contrast, total Fe considering 
as Fe particles larger than 0.45 µm, is 
found at different concentrations through 
the wetlands. Due to water pH, ORP and 
dissolved organic carbon concentrations (i.e. 
< 1 mg.L-1), we hypothesize that total Fe can 
be defined as Fe oxide(hydroxides) aggregate 
in water suspensions. Figure 4 was plot to 
study the impact of total Fe concentration on 
Mn removal. This graph shows the evolution 
of the Mn concentration as a function of the 
total Fe concentration along the station and 
for different sampling campaigns. Our results 
shows that Mn concentrations significantly 
decrease when total Fe concentration is below 

Figure 4 Dissolved manganese and total iron (fraction > 0.45 µm) in surface waters sampled through the 
passive treatment plant. Sampling locations are illustrated Fig.1.

5 mg.L-1 in surface water. Watzlaf et al. (2004), 
who have studied a real passive treatment 
plant, reported that most of Mn removal 
takes place in “iron-free zone” corresponding 
to surface water containing low suspended 
Fe particles. Our results are consistent with 
Watzlaf et al. (2004) observations, significant 
Mn removal were found in wetland 3 
which contained the lowest total iron 
concentration. However, these observations 
require further investigation to understand 
the interdependence of Fe and Mn 
biogeochemical cycling in this environment.

Conclusions
This study presents data from a one-year 
monitoring programme of a coal-mine water 
treatment plant in order to highlights which 
factors affect the Mn removal efficiency. 
According to the results, Mn concentrations 
are dependent to water temperature and 
suspended Fe particles concentrations. 
Indeed, the higher Mn removal efficiency was 
observed during summer season when total 
Fe removal efficiency was the highest. We 
hypothesised that the microbial communities 
that oxidise Mn in this environment are 
temperature dependent. Also, it appears 
that Fe particles larger than 0.45 µm have an 
impact on Mn oxidation, but this needs to 
be understand by further investigations. It 
would be interesting to determine whether 
if the presence of suspended Fe in mine 
water has an impact on Mn biotic oxidation 
to predict long-term Mn immobilization in 
passive water treatment plants.
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