IMWA

portugal Spain

Water Management in Iron Ore Mining:
Regression Models for Optimizing
Water Use in Mining Complexes

Renata Andries', Renato Silva Jinior?, Guilherme Alves®

Vale Technological Institute, Botafogo Beach, 186, Rio de Janeiro, R], Brazil,
renata.andries@vale.com, ORCID 0009-0005-2002-512X
2Vale Technological Institute, Boaventura da Silva Street, 955, Belém, PA, Brazil,
renato.silva.junior@itv.org, ORCID 0000-0001-8875-6299

*Botafogo Beach, 186, Rio de Janeiro, R], Brazil,
guilherme.alves@vale.com, ORCID 0009-0008-3638-4655

Abstract

Mining plays a crucial role in economic development by providing raw materials that
drive social progress. In this context, water is a transversal and indispensable element at
all stages. However, with the increasing demand for water and climate change, efficiency
in the use of water resources has become a priority. Therefore, it is essential to develop
tools that enable effective water resource management in mining, promoting cost
reduction, mitigating water risks, and meeting environmental and social requirements,
as well as creating competitive advantages for the sector through transparency and
attracting investments.

The innovative approach of this work lies in the development of regression models
to analyze the relationship between iron ore production, mineral beneficiation method,
rainfall seasonality, and water demand. Using data from six Brazilian mining complexes
over 89 months, the research seeks to establish correlations that can guide strategic
decisions and increase water efficiency. Additionally, it is important to highlight that
there are few studies in the literature that quantify water use in relation to production,
differentiating Operational Water, Total Intake, and Reuse.

The main findings indicate that simple linear regression (SLR) is more effective for
analyzing Operational Water and Reuse, while generalized Poisson linear regression
(GPLR) presents lower errors for Total Intake. The research also reveals that both Total
Intake and Reuse have lower correlation with the production variable. This is because
total intake is more related to the volume of dewatering water than to the ore processing
itself. In other words, most of the dewatering volume is returned to the environment
without use and is not part of the operational water computation. Regarding the reuse
portion, it is mainly related to units with dams, i.e., units with wet beneficiation.
Furthermore, it occurs to a greater extent when there is robust water infrastructure
capable of treating/reusing non-new water volumes.

The applications of this work are vast, including the planning and analysis of water
use in mining enterprises. The developed models can be used as tools to increase
transparency, attract investments, and create competitive advantages. The implications
include promoting sustainable practices, reducing operational costs, and mitigating
environmental impacts, contributing to water security and the sustainability of the
mining sector.
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Introduction

Mining is essential for economic and social
development, with water being a critical
input throughout all mining phases. In 2023,
Brazil exported 378.5 million tons of iron ore,
valued at US$30.5 billion, and consumed an
average of 0.305 m® of new water per ton of
ROM (IBRAM 2023, 2024). Consequently,
it is estimated that the sector utilized appro-
ximately 115.4 million m® of new water in its
production processes that year.

However, freshwater consumption limits
arerapidly approaching (GERTEN et al.,2013)
or the available volume may have already
been exceeded (Grafton et al. 2013; Rosa et
al. 2019). The increasing water demand is
driven by population and economic growth
across various sectors, including industry,
agriculture, livestock, energy, and mining.
The World Resources Institute reports that
a quarter of the global population lives in
countries with extreme water stress, with
over 1 billion people projected to face this
situation by 2050.

Considering the reliance on water in
iron ore mining, the rising water demand
over the years, and the increasing frequency
of global water scarcity events, it is crucial
to thoroughly understand the operational
water balance and actual water demand in
mining projects. This understanding enables
the prioritization of sustainable sources, the
selection of water management strategies,
the proper planning of necessary water
infrastructure, and the enhancement of
freshwater use efficiency, thereby preparing
the sector for potential shortages or changes
in supply conditions.

Water estimates for iron ore processing
are limited in the literature, particularly
when accounting for various components of
the operational water balance, such as water
capture for drawdown, freshwater, and reused
water. Additionally, beneficiation methods
(dry, wet or natural moisture processing) must
be differentiated when calculating the project’s
overall water demand, as each method has
distinct water requirements and infrastructure,
influencing the feasibility of water reuse.

In the book “Perspectives and Advances
in Water Resources Management in Mining”

(ANA and IBRAM, 2024) the average specific
water use per ton produced for different
products was calculated by dividing the
annual volume declared in grant applications
by the annual ore production. However, this
granted volume does not account for water
capture needed for drawdown or the water
used in the production process. Additionally,
this indicator overlooks reused water, which
constitutes most of the water consumption
in an iron ore plant (approximately 80%) and
treats all iron ore mining methods (natural
moisture and dry processing) as similar.

NORTHEY et al., (2019) analyzed 359
public mining reports for various minerals
and found water withdrawals ranging from
0.13 m® to 17.29 m? per ton of processed ore.
This research supports the assertion that it
is not feasible to group or model a range of
water use for different production processes.
Furthermore, the indicator used in the
research refers to total water withdrawal, not
the new water used in operations. Therefore,
in the case of iron ore, the water quantification
presented by the author is more related to
the water demand for drawdown than the
operational use of new water.

The objective of this work is to develop a
tool to quantify the water demand required
for an iron ore mining project, from
extraction to the final product. This tool will
consider the total water collected, water used
in the production process, and reused water.
Linear regression models will be employed to
compare water demand relative to the volume
of raw ore processed (ROM) for different
mineral processing methods. The following
sections present the theoretical framework,
methods, results, and conclusions necessary
for understanding and executing the project.

Methods

The methodological steps of this study are
as follows: 1) Data collection, including the
definition of samples and variables; 2) Statis-
tical treatment and analysis; 3) Correlation
analysis; 4) Development of linear regression
models (both simple and generalized); and
5) Model diagnostics. The following sections
provide detailed descriptions of each step.
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Database, variables and sample

The primary data utilized in this study
encompass operational water monitoring
and mining reports from six Brazilian iron
ore mining complexes over a period of 89
months (January 2017 to May 2024). The
analyzed complexes include Serra Sul (PA/
BR), Serra Leste (PA/BR), Serra Norte (PA/
BR), Itabira (MG/BR), Vargem Grande (MG/
BR), and Paraopeba (MG/BR), resulting in
a total of 2,670 observations. The variables
incorporated into the linear regression model
are Operational water, Total water withdrawn,
Reused water, Plant feed, and Type of mineral
processing.

Statistical treatment and analysis

During the analyzed period, operations
experienced several events, including
production shutdowns, changes in the
production process, alterations in data con-
solidation personnel, and variations in water
volume estimates. These factors increase
the likelihood of data variability due to the
absence of a verification or standardization
process. Therefore, it is crucial to analyze and
process the data, identifying and removing
potential outliers to enhance data reliability
before utilizing them in the proposed models.

Outliers were detected using the
Interquartile Range (IQR) rule, which employs
values estimated by regression methods
(Jeong et al. 2017) to define acceptance or
rejection limits for measured values. The
normality of the data will be assessed using
the Shapiro-Wilk test to determine whether
parametric or non-parametric hypothesis
tests should be applied. Visualizations such as
boxplots, histograms, and scatter plots will be
generated to examine the data set.

Correlation analysis

To understand the correlation between the
variables in the model, Pearson’s correlation
coeflicient will be employed. This coefficient
is a bivariate measure of the association
(strength) of the relationship between two
variables (Paranhos et al. 2014). It ranges from
-1 to 1, where the sign indicates the direction
(positive or negative) of the relationship,
and the value indicates the strength of the
relationship. A perfect correlation (-1 or 1)

signifies that the value of one variable can be
precisely determined by knowing the value of
the other (Elian 1988; Paranhos et al. 2014).
Conversely, a correlation of zero indicates no
linear relationship between the variables.

Simple linear regression model (SLR)

According to (Elian 1988), linear regression
is a global method and is based on the use of
only one equation to explain the relationship
between the variables studied (dependent and
independent). The simple linear regression
model (SLR) expected for the present study is
given by the equation below.

Yi=[30+[31'X1+81

Where vy, is the i-th value of the response
variable, P, e P, are the parameters
(regression coeflicients), X, is the i-th value
of the predictor variable and ¢, is the random
error term.

Generalized linear model (GLM)

When aiming to associate a dependent
variable with independent variables, linear
modeling is commonly employed. However,
a limitation of linear models is that the
dependent variable must follow a normal
distribution Akaike (1974). Therefore, it is
necessary to seek an alternative method to
satisfactorily associate the dependent and
independent variables.

According to Dobson (2001), the gene-
ralized linear model (GLM) allows for
the adjustment of regression models for
univariate response data that follow a
distribution from the exponential family.
The exponential family includes distributions
such as normal, binomial, Poisson, geometric,
negative binomial, exponential, gamma, and
inverse normal.

The generalized linear model with Poisson
distribution is given by the equation below:

ln(Yi): ﬁ0+ Bl ‘X1+ BZ'XZ+"'+Bn'Xn+8i

Where vy, is the i-th value of the response
variable, B, B, e P, are the parameters
(regression coefficients), X, X, e X, are
known constants and ¢ is the random
error term.
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Table 1 Descriptive statistics of the variables Operational water, Total water withdrawn and Reused water
(m?) and Production unit (t).

Complex Variable Mean Median o Minimum Maximum
Operational water (m?) 782,288 706,551 389,185 176,184 2,134,528
Water Withdrawn (m?) 1,239,970 1,177,568 418,597 607,152 2,610,282
Itabira Complex
Reuse water (m?) 5,248,472 5,121,209 742,584 3,942,365 6,855,672
Production unit (t) 4,194,529 4,209,416 470,050 3,056,534 5,270,583
Operational water (m?) 484,760 509,734 185,883 194,557 1,009,908
Water Withdrawn (m?) 1,243,860 1,202,686 263,204 356,785 1,859,243
Paraopeba Complex
Reuse water (m?) 1,154,011 790,026 921,491 162,860 2,916,920
Production unit (t) 1,694,792 1,414,756 897,347 385,308 3,442,221
Operational water (m®) 860,612 877,598 359,375 82,480 1,602,300
Vargem Complex Water Withdrawn (m?) 1815025 1,761,688 266,792 1,403,991 2,662,421
Grande Reuse water (m?) 4,447,241 1,589,233 5,415,777 0 18,295,521
Production unit (t) 3,306,432 3,261,708 1,454,959 125,848 6,023,899
Operational water (m?) 18,834 18,054 8,159 4,494 38,574
Water Withdrawn (m?) 19,654 20,664 8,791 4,494 40,645
Serra Leste Complex
Reuse water (m?) 0 0 0 0 0
Production unit (t) 429,488 410,497 95,215 73,559 573,849
Operational water (m®) 645,536 606,621 271,821 168,415 1,221,619
Water Withdrawn (m?) 1,563,351 1,544,904 581,663 386,026 5,185,788
Serra Norte Complex
Reuse water (m?) 2,856,345 2,841,263 818,965 1,127,990 6,475,531
Production unit (t) 9,687,420 9,646,836 2,458,428 4,669,465 13,838,155
Operational water (m?) 86,213 82,216 27,926 34,392 151,884
Water Withdrawn (m?) 580,961 369,284 569,485 34,392 1,795,160
Serra Sul Complex 5
Reuse water (m?) 5513 2,123 7,717 0 34,665
Production unit (t) 6,038,252 6,447,528 2,098,740 934,899 9,643,820
Model diagnosis Results

The selection of the optimal regression
model will be based on statistical criteria,
including the coefficient of determination
(R?), standard error (o), root mean-square
deviation (RMSD), and Akaike information
criterion (AIC). RMSD measures the
difference between the values predicted by
a model and the observed values, calculated
as the square root of the mean of the squared
errors. The AIC method, proposed by Akaike
(1974), addresses model identification
from the perspective of statistical decision

Statistical treatment and analysis

Statistical analysis of the data was conducted
by calculating the means, medians, standard
deviations, minimums, and maximums
(Table 1). Comparing the standard devia-
tion (o) with the mean of the variables
(Operational water, Total water withdrawn
and Reused water) reveals significant varia-
bility within the complexes, as well as for
plant feed. This variability can be attributed
to the dynamic nature of operations, which
experience fluctuations in production due to

theory, facilitating the selection of the
most appropriate loss function for model
adjustment.

market demand, climatic seasonality, process
maturity, changes in production routes, and
other factors.
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The Shapiro Wilk test was used to analyze
the normality of the data. Most of the
variables in the complexes do not follow a
normal distribution. Although a non-normal
distribution of most of the variables was
observed, it is possible to perform a regression
model with the data from the 6 complexes
to analyze the relationship between the
variables and the Production Unit. Linear

Operational Water x Production Unit
Processing: Natural moisture

In(y) = 429 e-07x + 10.34
Pseudo R? = 0.720

R?=0.821 )
Y 0.0113x+16350.21

@ Vargem Grande Complex @ Paraopeba Complex

Total water withdrawn x Production
Unit | Processing: Natural moisture

regression assumes that the residuals (errors)
of the model follow a normal distribution,
not necessarily the independent or dependent
variables. Furthermore, if the residuals do not
follow a normal distribution, transformations
in the variables (such as logarithm or square
root) can be considered to improve the
normality of the residuals.

Reuse water x Production Unit
Processing: Wet

In(y) = 7.31 e-07x + 12.39
Pseudo R? = 0.802

Serra Sul ® Serra Leste @ Serra Norte

Figure 1 Model behavior: 1) SLR Operational Water processing at natural moisture, 2) GLM Total water
withdrawn at natural moisture and 3) GLM Reuse water at wet processing.

Table 2 Summary of analysis of SLR and Poisson GLM. Gray color indicates the best-fitting model.

Operational Water (m?) x Production Unit (t)

Proc. Model po o (BO) B1 o (B1) R? o (Res.) p-value AIC RMSD
SLR -1.01E+05  8.60E+04 7.70E-02 8.61E-03 0485 1.96E+05 <2e-16 1.87E+03  2.13E+04
. GLM 1.28E+01 2.03E-04 2.24E-07 559E-11 0410 2.33E+07 <2e-16 2.33E+07  2.61E+03
SLR 1.64E+04  2.08E+03 1.13E-02  4.29E-04 0.821 1.69E+04 <2e-16  2.49E+03 1.38E+03
N GLM 1.00E+01 7.37E-04 2.04E-07 1.16E-10  0.790 9.41E+05 <2e-16  943E+05 1.65E+03
SLR 2.59E+05 3.99E+04 1.53E-01 1.24E-02 0.407 2.74E+05 <2e-16  4.79E+03  1.84E+04
v GLM 1.22E+01 5.93E-04 1.21E-07 556E-11 0490 4.98E+06 <2e-16 4.98E+06  1.53E+03

Total capture (m®) x Production Unit (t)

Proc. Model Bo o (BO) B1 o (B1) R? o (Res.) p-value AIC RMSD
SLR 4.19E+05  2.22E+05 1.18E-01 2.22E-02 0.249 5.07E+05 8.64E-07 2.03E+03 5.50E+04
. GLM 1.40E+01 1.25E-04 5.64E-08 3.75E-11  0.090 2.39E+07 <2e-16 2.39E+07  2.33E+04
SLR -7.34E+04  4.45E+04 1.14E-01 9.17E-03  0.505 3.62E+05 <2e-16 341E+03  2.95E+04
N GLM 1.03E+01 4.96E-04 4.29E-07  6.77E-11  0.720 2.48E+07 <2e-16 2.49E+07  7.26E+02
SLR 1.23E+06  5.76E+04  8.27E-02 1.79E-02 0.088 3.95E+05 6.70E-06 4.79E+03  1.84E+04
v GLM 1.35E+01 3.68E-04 7.58E-08  3.53E-11 0.280 1.17E+07 <2e-16 1.17E4+07  4.41E+02

Reuse (m?) x Production Unit (t)

Proc. Model go o (BO) B1 o (B1) R? o (Res.) p-value AIC RMSD
SLR 3.59E+06  3.52E+05 -7.55E-02  3.52E-02 0.051 8.02E+05 3.48E-02 2.11E+03 8.70E+04
; GLM 1.24E+01 1.37E-04 7.31E-07  3.12E-11  0.802 1.67E+08 <2e-16 1.67E+08  2.33E+04
SLR -1.25E+03  6.35E+02 1.21E-03 1.31E-04 0362 5.17E+03 <2e-16 2.13E+03  4.21E+02
N GLM 4.54E+00 6.88E-03 5.83E-07 8.92E-10 0.620 5.11E+05 <2e-16 5.11E+05  7.26E+02
SLR -261E+06  3.49E+05 2.07E+00  1.09E-01 0.623 2.39E+06 <2e-16 5.74E+03  1.61E+05
W GLM 1.51E+01 2.56E-04  -2.65E-08 2.60E-11 0.050 1.87E+07 <2e-16 1.87E+07  2.33E+02
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Correlation analysis

The linear correlation matrix was generated
by calculating Pearson’s correlation coeffi-
cients between the dependent and indepen-
dent variables used in the study. A stronger
correlation was observed among the variables
associated with the natural moisture bene-
ficiation type. This can be explained by the fact
that, in this type of beneficiation, the primary
use of water is for ore processing itself.
Generally, in natural moisture processing,
water is used more for particulate control
than for ore processing. In other words, water
use is more related to the mining area, roads,
and piles that need to be sprayed.

Regarding operational water, an R?
greater than 0.6 was obtained when com-
paring the production unit, suggesting that
this variable can be used as a dependent
variable in a model explaining the use of
operational water in relation to the plant’s
feed. However, the same correlation is not
observed for total water withdrawal or
reuse. This is because total water withdrawal
is more related to the volume of drawdown
water than to ore processing itself. In other
words, most of the water withdrawn is
returned to the environment without being
used and is not included in the calculation
of operational water.

The potential for water reuse is mainly
associated with units that have dams, i.e.,
units with wet processing. Additionally, reuse
is more prevalent when there is a robust water
infrastructure capable of treating and reusing
non-new water volumes.

Simple Linear Regression Model (SLR)
and Generalized Linear Regression Model
(GLM)

Below is the graphical representation of the

models with the highest R* values (Fig. 1),

a comprehensive presentation of the results

(Table 2), and a summary of the results

analysis.

o Operating Water | Hybrid (H): The SLR
model is considered the best due to its
higher R? and lower AIC, despite the GLR
model having a lower RMSD.

o Operating Water | Natural Moisture
(NM): The SLR model is the best due to its
higher R?, lower AIC, and lower RMSD.

o Operating Water | Wet (W): The SLR
model is preferred due to its lower AIC,
despite the GLR model having a higher R
and lower RMSD.

o Total Water Withdrawal | Hybrid (H): The
SLR model is the best due to its higher R
and lower AIC, despite the GLR model
having a lower RMSD.

o Total Water Withdrawal | Natural Mois-
ture (NM): The GLR model is the best due
to its higher R* and lower RMSD, despite
the SLR model having a lower AIC.

o Total Water Withdrawal | Wet (W): The
GLR model is the best because it has the
highest R* and lowest RMSD, despite the
SLR model having a lower AIC.

o Reused Water | Hybrid (H): The GLR
model is the best because it has the high-
est R? and lowest RMSD, despite the SLR
model having a lower AIC.

o Reused Water | Natural Moisture (NM):
The SLR model is the best because it has
the lowest AIC and RMSD, despite the
GLR model having a higher R

o Reused Water | Wet (W): The SLR model
is the best because it has the highest R?
and lowest AIC, despite the GLR model
having a lower RMSD.

Conclusion

Regarding the models studied, it was found
that simple linear regression (SLR) presents
the greatest gain when analyzing the
Operational Water and Reuse coefficient.
However, for Total Water Withdrawn, the
generalized linear Poisson regression (GLPR)
models generally presented smaller errors.

For both Total Water Withdrawn and
Reuse, a lower correlation was observed with
the Production Unit variable (Plant feed).
This is because Total Water Withdrawn is
more related to the volume of drawdown
water than to the processing of the ore itself.
In other words, most of the drawdown volume
is returned to the environment unused and is
not part of the calculation of operational water.

The potential for reuse, on the other hand,
is mainly related to units with dams, i.e., units
with wet processing. Additionally, it occurs to
a greater degree when there is a robust water
infrastructure capable of treating/reusing
non-new water volumes.
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Finally, the models proposed in this work,
both the SLR model and the GLPR model,
present an important technical-scientific
contribution, as they can be used as useful
tools for planning and analyzing water use
in iron ore mining projects. Furthermore,
there are no studies in the literature that
estimate water use in relation to production
by dividing the uses into Operational Water,
Total Water Withdrawn, and Reuse.
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