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Abstract
This study uses satellite imagery and the HSV color model to assess pit lake water 
quality. Water color results from sunlight interactions influenced by dissolved ions and 
suspended particles. Transition metals form distinct complexes (Fe2+: olive green, Cu2+: 
blue-green, Fe3+: brown-yellow), while oxyhydroxide colloids scatter specific wavelengths 
(Fe: red-orange, Al: white). Because pH and redox conditions affect ion complexation 
and mineral phase formation, HSV variations can reflect physicochemical changes. 
Validation at Berkeley Pit Lake showed correlations between satellite-derived HSV 
and known events. The method is being applied to Chilean pit lakes for environmental 
monitoring, aiding early detection of environmental changes.
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Introduction 
A large portion of the environmental issues 
linked to mining stem from the waste 
generated during extraction, with pit lakes 
being among the most challenging mining 
legacies to manage. These water bodies 
are prone to physicochemical changes due 
to prolonged exposure to minerals like 
pyrite, which can lead to acidic conditions 
and elevated sulfate and trace element 
concentrations in the pit lake and nearby 
water bodies. This study aims to develop a 
robust methodology and numerical dataset 
to analyze, monitor, and determine the 
physicochemical characteristics of pit lakes 
using satellite imagery.

The innovation of this research lies in its 
development of a cost-effective methodology 
for monitoring pit lakes through the color 
of the water in the HSV (Hue, Saturation, 
Value) model. Several studies have shown 
that the true color of the water can indicate 
the hydrochemical conditions of water 
bodies. For instance, Murphy et al., (2018), 

and Ohsawa et al., (2009) found that 
dissolved Fe2+ gives water a green olive hue 
due to light absorption, while native sulfur 
particles scatter a blue hue in volcanic crater 
lakes. Castellón et al., (2013) observed that 
aluminium colloids influence water color by 
reflecting light in all visible wavelengths (i.e., 
whitish color to the water), producing the 
unusual sky-blue color of Celeste River in 
Costa Rica. Additionally, the reddish color of 
iron oxides, oxyhydroxides, and hydroxides is 
a well-known characteristic of these mineral 
phases, used as pigments since prehistoric 
times (Torrent & Barrón, 2002). These 
findings suggest that the physicochemical 
characteristics of pit lakes can be inferred 
from satellite imagery, as mineral speciation 
and ion complexation are pH and redox-
dependent.

Time series of HSV values for each pit 
lake under study were calculated using 
surface reflectance data from Landsat 
and Sentinel-2 missions, processed via 
the Google Earth Engine with Python. By 
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correlating the H, S and V of the water with 
physicochemical properties such as pH, 
redox, metal concentrations and stratifi cation 
states. Th is methodology was validated using 
the publicly available dataset from Berkeley 
Pit Lake, Montana, USA, compiled by INAP 
in the Pit Lakes Database. Th is acidic pit lake 
has historical water quality records dating 
back to the 1980s, overlapping with publicly 
available satellite data from Landsat 4, 5, 7, 8, 
and 9, and Sentinel-2 satellites. Following this 
validation, the methodology was applied to 
Chilean pit lakes with data in situ identifi ed 
through web scraping, allowing for a broader 
assessment of its applicability in diverse 
mining environments.

Method
Satellite imagery from Landsat 4, 5, 7, 8, 
9, and Sentinel-2, stored in Google Earth 
Engine (GEE), was analysed to determine the 
true colour of pit lakes. 

Th e process starts with the identifi cation 
and delineation of the pit lake under study 
over multi scenes. To do so, a two-steps 
method involving the uses of Normalised 
Diff erence Water Index (NDWI) and a 
supervised machine learning technique, 
Random Forest, were employed.

Th e fi rst step corresponds to the 
identifi cation and segmentation of the pit 
lakes using the NDWI histogram, calculated 
as (GREEN – NIR) / (GREEN + NIR), and 
the OTSU algorithm (Otsu, 1979). Metadata, 
including acquisition date, scene name, solar 
azimuth, cloud cover percentage, and water 
surface area, was extracted and stored in an 
Excel database for each scene. Scenes without 

detected water were assigned an NDWI 
value of 10, and each scene was validated 
manually by assigning 1 for correct mapping 
and 0 for incorrect mapping. Th is process is 
applied to each of the six satellite collections, 
independently.

Validated scenes (i.e., scenes where the 
NDWI threshold value found by the OTSU 
algorithm properly identifi es water and non-
water pixels) were then used as training cases 
of a Random Forest algorithm. Th is supervised 
machine learning technique uses all the 
available bands in each satellite collection 
to derive a suitable algorithm capable to 
distinguish water and non-water pixels. An 
optimum number of seven validated scenes 
are recommended to be used in the training 
process with suffi  cient temporal spacing 
among them to capture possible changes in 
colour and surface variations of the water 
body. Th is process is also applied to each of 
the six satellite collections independently.

Aft er identifying and segmenting the pit 
lakes, water pixels were processed to extract 
HSV color values by converting RGB to HSV 
(Fig. 1), enabling a more detailed interpretation 
of lake color variations, following the method 
used in Murphy et al., (2018).

A grid of points was generated on the 
lake to extract HSV values and then were 
stored in an Excel template for inter-satellite 
comparisons, compiling the following dataset:
• Mean HSV values across all points
• HSV at the lake’s central point (deter-

mined by Euclidean distance)
• 5th, 50th, and 95th percentile values of HSV
For a better representation of hue (0–1), a 
polar histogram was used, where hue values 

Figure 1 RGB and HSV model color (Extracted from Saraullo et al., 2019).
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were transformed by multiplying by 360. The 
transformed dataset was subjected to QA/QC 
filters to improve data reliability and select the 
most representative images of each pit lake.

The validation process was conducted 
using the INAP Pit Lakes Database, which 
provided access to comprehensive historical 
data. Berkeley Pit was selected as the validation 
site due to its large surface area, extensive 
temporal data in situ, and documented studies 
of its evolution. Hydrochemical modelling 
of Berkeley Pit Lake data using PHREEQC 
allowed for an improved understanding of the 
redox conditions, mineral saturation indices 
and co-precipitation processes affecting water 
colour dynamics.

Once validated, the methodology was 
applied to Chilean pit lakes with available 
public data. To identify these lakes, a Python-
based web scraping script was developed 
to extract relevant information from the 
SEA (Servicio de Evaluación Ambiental) 
website. The validated methodology was then 
applied to these sites, ensuring a systematic 
remote sensing approach for assessing 
physicochemical characteristics in pit lakes 
across Chile.

Results
Validation – Berkeley Pit Lake Case
The methodology was validated using satellite 
imagery of Berkeley Pit Lake. A total of 1163 
images were found for Berkeley Pit Lake 
between May 1984 to September 2024, with 
NDWI correctly identifying water bodies 
in only 16.5% of the total cases. In contrast, 

the Random Forest algorithm achieved a 
significantly higher accuracy of 83.4% (Tab. 1).

To ensure an accurate representation 
of pit lake color, a QA/QC filtering process 
was applied to the 1163 images. The first 
filter, based on mean color variation below 
35°, removed 433 images, leaving 730 valid 
scenes. The second filter, applying a dispersion 
coefficient threshold (R > 0.95), further 
reduced the dataset to 439 images. The third 
filter, incorporating manual area mapping with 
a 20% error margin, gives in a final dataset of 
311 images for analysis (Tab. 2).

The evolution of HSV reveals the 
occurrence of four stages (Fig. 2), which 
are closely associated with changes in 
hydrochemistry over time:
•	 Stage 1 (1984–1988): Green olive hues 

(H = 0.25, S = 0.35, V = 0.05) indicate a 
dominant presence of Fe2+, with more dis-
solved iron suggesting the onset of acid 
conditions due to groundwater contact 
with sulfide rocks. This phase exhibits a 
meromictic state, defined by the establish-
ment of a deep chemocline.

•	 Stage 2 (1988–1997): Increase of the Fe3+/ 
Fe2+ ratio due to oxidation, changing the 
color of the water to yellow-brown (H = 
0.15, S = 0.35, V = 0.04). This transforma-
tion is supported by an increase in the pe 
values of the water while maintaining an 
almost constant pH. 

•	 Stage 3 (1997–2013): The introduction 
of alkaline tailings sludge into the pit 
lake during this stage resulted in the co-
precipitation of Fe-oxyhydroxides and 
Fe-oxyhydroxide-sulfate. This process is 

Remote Sensor Landsat 5 Landsat 7 Landsat 8 Landsat 9 Sentinel 2 Total images

Images Evaluated 159 610 52 107 235 1163

NDWI Correct (%) 26 (16.35%) 41 (6.72%) 10 (19.23%) 12 (11.21%) 103 (43.82%) 192 (16.5%)

RF Correct (%) 125 (78.61%) 599 (98.19%) 36 (69.23%) 48 (44.85%) 162 (68.93%) 970 (83.4%)

Table 1 Summary of satellite images analysed and classification accuracy of NDWI and Random Forest.

Remote Sensor Landsat 5 Landsat 7 Landsat 8 Landsat 9 Sentinel 2 Total images

Images Evaluated 159 610 52 107 235 1163

1st QA/QC Filter 131 451 30 49 69 730

2nd QA/QC Filter 72 241 29 39 58 439

3rd QA/QC Filter 54 169 23 19 46 311

Table 2 QA/QC filtering process for satellite images used in the evaluation.



IMWA 2025 – Time to Come

217217Valente, T., Mühlbauer, R., Ordóñez, A., Wolkersdorfer, Ch.

evident from the saturation indexes of 
Schwertmannite, Goethite, Jarosite and 
Ferrihydrite, and the colloidal particles 
of these minerals produced scattering ef-
fects that shifted the lake's hues towards 
red-orange and lower V values observed 
in this period (H = 0.07, S = 0.45, V = 
0.03). Due to the alkaline tailings disposal 
the lake returned to a holomictic state in 
2010, with a rise in pH from 2.5 to 4 and 
a decline in Fe concentrations from 1000 
mg/L to 0.5 mg/L, accompanied by the 
disappearance of the chemocline. These 
changes were further corroborated by the 
vertical homogeneity of the water col-
umn, indicating the absence of chemical 
stratification.

•	 Stage 4 (2013–Present): The most recent 
stage is characterised by a marked increase 
in H, S, and V values (H = 0.45, S = 0.8, 
V = 0.1), reflecting near-complete co-
precipitation of Fe-oxyhydroxides and Fe-
oxyhydroxide-sulfates, and the initiation of 
the co-precipitation of Al-oxyhydroxides 
and Al-oxyhydroxide-sulfates (Jurbanite 
– Alunite). This transition alters the light 
reflectance properties of the pit lake, as Al-
oxyhydroxides-sulfates scatters the lights 
in all the visible wavelengths (increase in S 
and V), enhancing the color given by both 
dissolved Fe2+ and Cu2+.

Application on Chilean Pit Lakes
Currently, Chile does not have an official 
registry of pit lakes. In this study, a numerical 

Figure 2 Correlation between true-color pit lake and in situ physico-chemical parameters.
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database was established, identifying a total of 
111 pit lakes across 46 mining sites. At these 
46 mining sites, a web scraping approach was 
applied to search for available environmental 
data. This process identified 23 pit lakes 
(20.4%) with reported physicochemical 
parameters, allowing the methodology to be 
applied to those with in situ data (Tab. 3).

The analyzed pit lakes predominantly 
exhibit sulfate-calcium water types, with 
pH values ranging from acidic to neutral-
alkaline (1–9), electrical conductivity (500 
–140000 µS/cm), and concentrations of SO₄ 
(40–185000 mg/L), Cu (0.001–4000 mg/L), 
Fe (0.001–4300 mg/L), and Al (0.005–7800 
mg/L).

Most pit lakes in Chile have an olive 
green hue (H = 0.3), indicating the presence 
of dissolved Fe2+. In some cases, on limited 
dates, the color changes to blue-green, 
suggesting the presence of dissolved Cu2+, 
typically associated with neutral to alkaline 
pH conditions (Fig. 3).

In two specific cases (Mina Sur and 
Quebrada Blanca) the color of the pit lake was 
initially olive green, then changed to a yellow-
brown and finally to a red-orange. Given the 

red-orange color, this indicates the presence 
of colloids Fe hydroxides, suggesting that the 
pH conditions are acidic (Fig. 3). 

The application of this method made it 
possible to determine the time of occurrence 
of the pit lake (i.e., “Cerro Blanco”), its 
seasonal occurrence being only between 
September and February. It also made it 
possible to determine backfill times in 
different pit lakes (i.e., “Andacollo”).

One of the limitations of the application 
of this methodology in Chilean pit lakes is 
the presence of shadows projected on the 
lake. This effect is particularly pronounced in 
winter due to the steep slopes of the Andean 
range and the low solar azimuth, which 
complicates the accurate segmentation of 
water bodies, as observed in the case of “El 
Soldado” (Fig. 4).

Another limitation is the low surface 
area of the pit lakes, which results in poor 
segmentation using random forest, due to the 
low number of pixels representing the water 
body. Therefore, for a reliable representation 
of the data, a minimum threshold of 10 pixels 
is recommended, resulting in an area of 
approximately 9000 m² in Landsat images and 

Mining Site Type of deposit Number of samples Data type No. of pit lakes with 
data

Andacollo Copper Porphyry 4 Tables 4

Candelaria IOCG 108 Database 1

Cerro Blanco
Calcium Carbonate 

(Others)
1 Database 1

Cerro Colorado Copper Porphyry 12 Modeling 2

Chuquicamata Copper Porphyry 4 Database 1

Collahuasi Copper Porphyry 39 Database 1

El Salvador Copper Porphyry
16 Writings and 

Laboratory Certificates
3

El Soldado Stratabound 3 Laboratory Certificates 1

La Coipa
Porphyry / Epithermal 

Au
4 Modeling 1

Los Bronces Copper Porphyry 4 Database 1

Mina Sur Copper Porphyry 9 Database 1

Quebrada Blanca Copper Porphyry 54 Database 3

Santo Domingo Stratabound 2 Tables 2

Zaldívar Copper Porphyry 3 Database 1

Total 5 260 5 23

Table 2 Summary of data collected through web scraping of pit lakes in Chile.
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Figure 3 Examples of olive green, blue-green, yellow-brown and red-orange colors. A) El Soldado, B) Cerro 
Colorado, C) Quebrada Blanca, D) Mina Sur.

1000 m² in Sentinel-2 images. This limitation 
arises from the low spatial resolution of the 
different satellites.

Conclusions
This study emphasizes the use of 
remote sensing for the physicochemical 
characterisation of pit lakes, utilizing 
true color analysis using the HSV model 
and the Random Forest machine learning 
algorithm. The use of QA/QC filters 

improves the segmentation of pit lakes 
in satellite images, certifying a correct 
color representation. The validation was 
performed at Berkeley Pit Lake, as it contains 
extensive historical data, has many studies, 
and has a large area. It also demonstrated 
that physicochemical characteristics can be 
inferred from the absorption of sunlight by 
dissolved chemical elements such as Fe2+ 
(Olive Green), Cu2+ (Blue-Green), and Fe3+ 
(Yellow-Brown). Mineral colloids such as 
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Figure 4 Presence of shadows that affected the segmentation of the pit lake by the azimuth of the Sun in 
“El Soldado”.

Fe and Al oxyhydroxide-sulfates also affect 
the color spectrum, as Fe-oxyhydroxide-
sulfates disperse the orange-red color, while 
Al-oxyhydroxide-sulfate colloids influence 
the color of water by reflecting light at all 
visible wavelengths, increasing S and V in 
the HSV model.

This methodology has been successfully 
applied in Chilean pit lakes, although its main 
limitation lies in the spatial resolution of 
Landsat and Sentinel images, particularly for 
smaller pit lakes. To improve monitoring, the 
use of hyperspectral drones is recommended 
to obtain higher resolution images, allowing 
for more accurate analysis of surface waters. 
Continuous monitoring with the HSV 
model offers a cost-effective alternative 
to in situ methods, facilitating long-term 
environmental assessment and improving pit 
lake management.
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