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Abstract
Integrating projections of mine water chemistry early into the mine design process—
prior to relevant site-specific data being available—provides the greatest opportunity for 
improving environmental outcomes with the lowest increases to overall schedule and 
cost. An approach derived from behavioral economics, “Reference Class Forecasting” 
(RCF), is applied here in a mine water quality context to identify a preliminary design 
basis for rock stockpiles. The RCF evaluation, as demonstrated in this paper, required 
a relatively low level of project definition, yet identified order of magnitude reductions 
necessary for constituents of interest and screened out other constituents from further 
review. 
Keywords: Mine water scoping design reference class forecast

Introduction 
Hydrogeochemical forecasts of future mine 
water chemistry can provide valuable tech
nical bases for the design of future mining 
projects. However, construction of a hydro
geochemical model requires a high degree of 
project-specific and site-specific knowledge 
to establish the conceptual framework for 
modeling and to inform model parameter 
values.  Developing the mine plan, site water 
balance, baseline water quality evaluation, and 
results from a geochemical characterization 
program requires considerable time and 
resources before model results are available. 

Further, mine development timelines 
continue to lengthen (Heijlen et al. 2021). 
The current average lead time to operations 
for a new nickel mine is over 17 years, 
with increasingly complex environmental 
review and permitting (ER&P) occupying 
a substantial part of that timeline. The 
combined effect of extended development 
timelines and commitment to a specific 
project definition during ER&P creates an 
inherent conflict: either the ER&P-committed 
mine design is out of date by the time permit 
decisions are imminent; or that ER&P must 
begin so far in advance of mine design 
that probabilistic modeling is hindered by 

numerous unconstrained assumptions that 
unduly restrict the subsequent mine design. 
Both are undesirable situations from the 
perspectives of the project, the regulator and 
the public process. 

This conflict between state of project 
knowledge and project timelines exists 
in other contexts. Budget forecasting for 
major multi-year capital projects requires 
cost estimates long in advance of detailed 
project design. The general rule of thumb 
is that the earlier in the project lifecycle 
that problem areas are identified, the more 
effectively management of those issues can 
be integrated into the project – resulting in 
better decision making, better design, and 
lower overall project cost. However, the 
conflicts between mine design and extended 
ER&P effectively constrain projects from 
applying best informed design principles for 
water management at the most advantageous 
stage of the process (Fig. 1). 

An alternative approach for early mine 
water quality design is presented in Reference 
Class Forecasting (RCF). RCF is borne out of 
economic theories originally by Kahneman 
& Tversky (Tversky and Kahneman 1974) 
(Kahneman 1979) and further developed by 
Flyvbjerg (2007) in transportation project 
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cost forecasting. It provides an alternative 
to ‘inside’ (or bottom up) cost buildups, 
which rely on a detailed breakdown of steps 
and assignment of cost to each, by instead 
looking for ‘outside’ similar projects that 
create a reference class from which costs for 
the project of interest may be more accurately 
estimated. 

Once a target project is identified, RCF is 
approached as a 3-step process per Flyvbjerg:
(1)	Identifying a relevant reference class of 

past, similar projects. The class must 
be broad enough to be statistically 
meaningful but narrow enough to be truly 
comparable with the specific project.

(2)	Establishing a probability distribution for 
the selected reference class. This requires 
access to credible, empirical data for 
a sufficient number of projects within 
the reference class to make statistically 
meaningful conclusions.

(3)	Comparing the specific project with the 
reference class distribution, in order to 
establish the most likely outcome for the 
specific project.

The principle of RCF was adopted here for 
scoping-level assessments of mine project 

water quality to more effectively integrate 
water quality design into mine planning. 
Early RCF-based planning (See Fig. 1, lower 
panel) brings the benefit of limiting the 
scope of water modeling requirements to 
streamline ER&P scopes without increasing 
water quality risk. The outcomes of a scoping-
level mining project water quality RCF are 
threefold: (1) screen out constituents that 
are unlikely to influence project design, 
(2) identify constituents that are likely to 
drive project design, including an order of 
magnitude of the reductions required, and 
(3) identify constituents for which a forecast 
is unclear and further review is necessary.

Methods
Development of Mine Water Quality  
Database
Globally, mining companies regularly sample 
and measure water as part of permitting 
requirements and in many jurisdictions 
those data become publicly available through 
local regulatory agencies. However, those 
water quality data tend to lack the contextual 
framing necessary to enable comparative use 
of the information. 

Figure 1 Mine development sequence with respect to design flexibility and cost to integrate changes. The 
inflection point between flexibility to integrate design changes and cost/complexity of executing changes is 
shifting earlier in project timelines as the permitting processes become longer and contingent on modelling.
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A database of mine water quality was 
constructed targeting ore from magmatic 
nickel-copper-platinum group elements 
(Ni-Cu-PGE) deposits. Available water 
quality measurements were associated 
with site metadata that include the local 
climate, primary ore mineralogy, dominant 
sulfide mineralization, host lithology, 
characteristic waste lithologies, mining 
and processing types and rates, and USGS 
mineral deposit type. In addition, water 
samples were associated with proximal 
mine features (mine pits, rock stockpiles, 
tailings basins, catchment ponds) that may 
influence water chemistry. This information 
was sourced from mine permit applications, 
financial reporting, environmental review 
documents and published research findings 
and efficiently extracted from those sources 
via automated machine algorithms. The 
digital data were scrutinized through a 
quality assurance / quality control process 
that involved multiple review criteria, 
including order of magnitude error, analyte 
mismatch, and digit rounding issues. The 
database presently contains information 
from 39 unique mines, 1,556 unique sample 
locations, covers 108 unique analytes 
and includes a total of 1,374,045 unique 
water quality measurements – all with the 
associated contextual metadata.

Application of RCF Approach
The mine feature targeted for this demon
strative RCF evaluation is a waste rock 
stockpile generated from an open pit Ni-
Cu-PGE magmatic sulfide ore mine. This 
theoretical mine (“Project mine”) will obtain 
ore from a deposit located in the upper 
latitudes of the United States. 
Identify a reference class 
The RCF approach echoes prior work on 
geoenvironmental models (for example, 
Plumlee and Nash (1995)), which posit that 
geological characteristics and their associated 
geochemical processes exert a fundamental 
control on the “environmental behavior” 
of mineral deposits, with factors such as 
climate, and mining and milling methods 
representing potentially subordinate controls 

on the same. This evaluation leverages 
operational data from a reference class of four 
Ni-Cu-PGE deposits. Due to the orogenesis 
of this deposit type, these mines are expected 
to broadly share lithological characteristics of 
both the host intrusive body and, less so, the 
surrounding country rock (Naldrett 2004). 
Table 1 summarizes a comparison between 
the mines selected to comprise the reference 
class for this evaluation and the Project mine. 
Criteria in Table 1 are: 
•	 Description: Indicates mining method. 
•	 Climate: Indication of net precipitation 

and temperature at site. 
•	 Deposit Type: All mines in this evalu-

ation are mining Ni-Cu-PGE deposits. 
Criterion indicates the “Secondary De-
posit Type”, per Appendix 3 of Mudd and 
Jowitt (2022).

•	 Waste Rock Lithologies: General litho-
logic context for rocks that report to the 
waste rock stockpile and/or waste rock 
management area. All mines are expected 
to manage mafic to ultramafic (M-UM) 
igneous compositions, with or without 
additional rock types.

•	 Stockpile Contact Water Characte­
ristics: Select general water chemistry 
parameters associated with waste rock 
storage. While all mines have waste rock 
contact water with neutral pH, there is 
notable variability in specific conductance 
and, consistent with this, sulfate concen-
tration. 

Establish a distribution of expectations
The mine water quality database was queried 
to obtain a dataset consisting of water quality 
observations from the reference class at 
sampling locations associated with waste 
rock stockpile seepage or runoff. Sampling 
locations selected were upstream of water 
treatment or other mitigative approaches. 
Analytes reported as below method detection 
limits were assessed as half of the respective 
limit. Observations were averaged on a 
monthly time basis, although this resulted 
in aggregation of a negligible portion of 
the dataset as most data were recorded 
on a monthly or longer frequency. For 
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each analyte, concentrations were ordered 
numerically and plotted as a probability 
distribution. Due to the overall similarity 
between the Project mine and those in the 
reference class, no site-specific adjustments 
to probability distributions were applied. 
Compare project to reference class
This evaluation was intended to identify the 
chemical constituents which will comprise 
the design basis for water treatment or 
other mitigative measures to be applied to 
a future waste rock stockpile (“constituents 
of interest”) by comparing likely untreated 
future water quality relative to one or more 
benchmarks. Therefore, in addition to the 
probability distribution of water quality 
expectations, evaluation thresholds are 
needed to serve as evaluation benchmarks, 
and decision criteria are selected to formally 
define the acceptable level of uncertainty 
under which the comparison is made.

Set evaluation thresholds. Evaluation 
thresholds were derived in this evaluation 
from twenty-two potentially relevant water 
quality standards and incorporated project 
risk tolerance (see example under “Set 
decision criteria”). Two sets of evaluation 

thresholds were used. One set of evaluation 
thresholds (“Primary” threshold) was set to be 
equal to the most restrictive of the potentially 
applicable water quality standards. A second 
set of evaluation thresholds (“Secondary” 
threshold) was defined at 25% of these same 
standards. These thresholds were selected 
as aligned with acceptable project risk at a 
scoping level of evaluation.

Set decision criteria. Decision criteria are 
an expression of risk tolerance that balance 
the value of the consequence of a wrong 
decision against the cost/time to obtain 
additional certainty. 

For this evaluation, the goal was to 
inform mine design based on water quality 
expectations. Under-projections (i.e., falsely 
rejecting an expectation that stockpile contact 
water will be above a water quality standard) 
were deemed to be of greater potential 
consequence than over-projections (falsely 
accepting the same), as they carry risks of a 
mine design that will result in exceedances 
to water quality criteria. However, both 
under and over projections have negative 
consequences, and thus, both risks of false 
acceptance and rejection are managed 
through establishment of decision criteria. 

Project Mine Mine A Mine B Mine C Mine D

Description  Open pit 
Open pit to 
underground 

Underground Open pit 
Open pit to 
underground 

Climate (Country, 
Köppen-Geiger code)

United States, Dfb  Spain, Csa United States, Dfb Finland, Dfc Canada, ET

Deposit Type  
Small M-UM 
Intrusion-related 

Small M-UM 
Intrusion-related

Small M-UM 
Intrusion-related

Layered Intrusive
Small M-UM 
Intrusion-
related

Waste Rock 
Lithologies  

M-UM intrusives, 
metasediments

Breccia with M-UM 
fragments, calc-
alkaline volcanics, 
and carbonates 

Peridotite, 
metasediments

M-UM intrusives, 
mica schists, 
shales

M-UM 
intrusives, 
gneiss

Stockpile Contact Water Characteristics

pH --- 7.9 7.5 6.6 7.3 – 7.7

Specific Conductance --- 3,300 2,500 5,000 200

Sulfate --- 1,700 1,100 1,600 Not available

Table 1 Project site and associated reference class mine stockpile features.
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Constituents are excluded from the 
design basis if the 99th percentile (P99) is less 
than the Primary threshold (i.e., the water 
quality standard). Th is is intended to limit the 
probability of falsely rejecting an expectation 
of water quality exceedances to less than 1%.

Constituents are included in the design 
basis if the P99 observation of the Reference 
Class probability distribution is greater than
the Primary threshold, and the 50th percentile 
(P50) observation is greater than the 
Secondary threshold (i.e., 25% of the water 
quality standard). Th is set of decision criteria 
isolates constituents for which there is greater 
than a 1% chance of being observed above 
the water quality standard, and no more than 
50% chance of being present at or above 25% 
of the water quality standard. Th e use of the 
Secondary threshold in this case manages 
the risk of overengineering the system by 
limiting “acceptance” to constituents that are 
likely to be present at concentrations near the 
standard.  

Constituents are classifi ed “undetermined” 
(i.e., more study is needed) if the P99 
observation of the Reference Class probability 
distribution is greater than the Primary 
threshold, and the 50th percentile (P50) obser-
vation is less than the Secondary threshold. In 
this case, observations are too variable; while at 

least 1% are above the water quality standard, 
half or more are well below it. Either additional 
information is required, or a decision may 
be made to adopt an adaptive management 
approach for the risk of overengineering for 
this constituent. 

Results and Discussion
Example cumulative distribution function 
(CDF) plots of water quality constituents 
from the identifi ed reference class of mine 
stockpiles are shown in Fig. 2 (Step 2 of the 
RCF process). Th e primary and secondary 
water quality thresholds defi ned for each 
constituent are displayed within the CDF 
plots as a solid and dashed vertical line, 
respectively. Th e full results of the RCF 
constituent screening according to the 
defi ned acceptance criteria for the project 
are summarized in Table 2 (Step 3 of the RCF 
process).

In this evaluation, the RCF narrowed the 
scope of constituents from a starting list of 
twenty-two by ruling out eight constituents 
that were unlikely to have any bearing on 
mine design, six with likely design infl uence 
and eight for which further site-specifi c 
evaluation would be recommended including 
an indication of degree of necessary reduc-
tion for each of the latter two groups. Th e 

Figure 2 Example CDF plots for water quality constituents from mine stockpile reference class. Primary and 
secondary evaluation thresholds are identifi ed by solid and dashed vertical lines, respectively.
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resultant list of focus areas can be integrated 
into early mine planning to evaluate a range 
of management techniques and associated 
cost/benefits to best inform the mine plan 
and upcoming ER&P processes which may 
include: formal regulatory applicability 
assessments of target water quality standards, 
reassessing mine design to limit exposure of 
constituents of concern, evaluation of source 
control techniques that limit mobilization 
to water, passive/semi-passive/active control 
technology evaluations, regulatory relief 
options and adaptive risk management 
approaches that evolve over time.  

Limitations. Data availability to construct 
mine feature reference classes is the current 
limiting factor on broader application of RCF. 
In this example, four sites were identified 
for which stockpile data across the range of 
constituents of interest were available where 
a pool size approaching 20-30 sites would be 
ideal. Data availability is increasing as social 
and governance interests in data transparency 
drive industry and regulatory bodies to 
make large datasets publicly available. For 
example, an industry-led group has recently 
been assembling a database of pit lake water 
quality. Reference classes that are comprised 
of larger pools of mine feature sources will 
improve confidence in the outcomes of the 
methodology. 

Conclusion
Reference class forecasting provides a rapid, 
empirical-based method for early-in-design 
projections of mine water quality. Such 
forecasts inform mine design for water 
quality at the most advantageous stage of the 
planning process and focus ER&P exercises 
on the constituents of highest interest.

In the example application in this paper, 
the RCF established a focus on specific 
constituents and a scale to which those 
constituents are likely to affect stockpile 
performance. This provides numeric goals 
for the design team to integrate water quality 
solutions at a time when full project lifecycle 
cost-benefits are most actively assessed. 
RCF can also focus the permitting team on 
constituents that merit a deeper evaluation 
during ER&P. On a more nuanced basis, 
RCF also prompts a project team to make 
conscious decisions about acceptable risk 
tolerance in mine water quality design.

The RCF process is most limited at this 
point by the availability of mine data from 
which to build statistically robust reference 
classes, but its potential for application is 
expected to grow as data transparency and 
industry interests drive more mine water 
quality data into the public realm.

Constituent Outcome Acceptance Criteria
Constituents 

(scale of reduction expressed  
as P99/primary threshold)

P99 P50

Constituent is unlikely to 
influence design

< primary water 
quality threshold

--- ---
antimony, barium, beryllium, chromium, 
fluoride, lead, mercury, pH 

Constituent is likely to 
influence design

> primary water 
quality threshold

AND
> secondary water 
quality threshold

arsenic (2x), copper (8x)
manganese (130x), nickel (38x)
silver (4x), sulfate (14x)

Further evaluation is 
recommended

> primary water 
quality threshold

AND
< secondary water 
quality threshold

aluminum (8x), cadmium (5x)
chloride (3x), cobalt (90x)
selenium (10x), thallium (4x) 
TDS (7x), zinc (10x)

Table 2 Water quality acceptance criteria and RCF-identified constituents in each outcome category.
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