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Abstract
Data acquisition optimisation in a decision-support modelling context is 
demonstrated. Groundwater model forecasts can accrue substantial uncertainty. 
Whilst assimilating field data can reduce this uncertainty, data collection can be 
expensive. In this paper an approach for optimal data collection that minimizes costs, 
maximizes informational value, and supports long-term resource sustainability 
is demonstrated. Using Ensemble Variance Analysis within a multi-objective 
optimisation framework, cost-effective monitoring locations for a real-world site 
are identified. Outcomes are a set of monitoring configurations which provide the 
optimal trade-off between cost and uncertainty reduction. From these, a monitoring 
program is selected that achieves 90% of possible uncertainty reduction at 30% of 
total cost. 
Keywords: Monitoring, optimisation, uncertainty, decision-support, modelling, 
groundwater
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Introduction 
Effective groundwater management at mine 
sites often relies on numerical modelling 
to support decision-making, including 
designing dewatering systems, securing 
water supplies for mining operations, and 
evaluating potential environmental impacts 
of mining activities. Groundwater models, 
being simplifications of reality, are inherently 
uncertain, particularly given the scarcity 
of information about real-world system 
properties and stresses. This uncertainty can 
typically be reduced by assimilating data 
from system state measurements. However, 
data collection and monitoring programs 
can be costly, and from a decision-support 
perspective, not all data holds equal value.

Value of data in model-based decision-
making is proportional to its capacity to 
reduce the uncertainty of model predictions. 
Data Worth Analysis (DWA) provides 
a systematic approach to evaluating the 

potential of new data to achieve this objective. 
Data worth based on linear analysis are well 
established in the groundwater modelling 
literature (e.g., Dausman et al. 2010; Fienen 
et al. 2010). However, they are limited by 
the assumption of linearity between changes 
in model parameters and predictions and 
come with the computational cost of filling 
out a Jacobian (e.g., sensitivity) matrix. The 
latter become particularly prohibitive when 
using high-dimensional parameterisation 
schemes, required to express hydrogeological 
heterogeneity and uncertainty.

More recently, He et al. (2018) introduced 
the Ensemble Variance Analysis (EVA) 
approach to assess data worth. EVA operates 
under the assumption that forecasted and 
measured values jointly follow a multi-
Gaussian distribution. And that to estimate 
the change in forecast uncertainty, it is 
not necessary to know the value of future 
measured data, only the covariance between 
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the forecast and the measured data. Using this 
assumption, the variance (i.e., the uncertainty) 
and covariance (i.e., how knowing about one 
value changes uncertainty in another value) 
of model outputs can be estimated from an 
ensemble of simulations without requiring 
prior knowledge of the measured values. This 
ensemble of model outputs is generated by 
running a model many times with different 
samples of plausible parameter values. Each 
sample is referred to as a realisation. 

From a practical perspective, EVA offers a 
significant advantage over linear methods: it 
relies on ensembles of model outputs rather 
than finite difference derivatives, making 
its computational cost independent of the 
number of model parameters and removing 
the assumption of linearity. This can reduce 
the number of model runs required for DWA 
from the order of a few thousands to a few 
hundred. 

The current paper discusses the application 
of EVA to optimise a monitoring network at 
an undisclosed mine site. Measured data is 
used for history matching a decision-support 
groundwater model. The model is used to 
support management of extraction wells, with 
potential effects on several environmental 
receptors. As data collection is expensive, 
the objective is to rationalize the monitoring 
network to ensure high-quality forecasts 
whilst minimizing cost. Although we focus 
here on groundwater level data, this same 
approach is readily extendible to any datatype 
that can be employed to inform a model.

Methods
In summary, a numerical groundwater model 
is constructed to simulate predictions of 
management interest, as well as potential as-
of-yet uncollected data from the monitoring 
network. This model is simulated many 
times with different parameter realisations. 
The combination of parameter realisations 
is referred to as an “ensemble”. The simulated 
outputs from the ensemble of models are 
used to calculate the co-variance between 
predictions of interest and potential new 
data. This enables calculation of the expected 
predictive uncertainty, if the as-of-yet 
uncollected data is collected.

Subsequently, multi-objective optimi-
sation is undertaken by calculating the 
expected predictive uncertainty many 
times, assuming different combinations of 
collected data, searching for the combination 
of monitoring locations that maximize 
uncertainty reduction at the minimum cost. 
Note this does not require re-running the 
numerical model, only the EVA calculations 
which have a low computational cost.

Site and Numerical Modelling
Due to confidentiality reasons, details of the 
site cannot be disclosed. However, this should 
not detract from the approach and outcomes. 
The mine site is located in an arid area and 
relies on a well-field to maintain water 
supply throughout the project’s lifespan. 
The well-field extracts groundwater from 
a paleochannel aquifer, overlain by low-
permeability calcretes and a phreatic aquifer. 
Annual recharge is low and sustainability of 
the well-field yield relies on storage and lateral 
inflow to the paleochannel. Management of 
the well-field is additionally constrained by 
needing to ensure that nearby environmental 
receptors are not affected by drawdown, 
and that the confined paleochannel is not 
desaturated. 

A numerical model for the site is used 
to support management of the well-field 
and forecast sustainable yields. The model 
simulates historical and future project lifespan. 
History matching is undertaken for the 
historical period using an iterative ensemble 
smoother (IES), as implemented in the open-
source software PESTPP-IES (White et al. 
2018). IES provide computationally efficient 
approaches to condition model parameters 
to measured data. Information from available 
field data is assimilated (including hydraulic 
heads, site characterisation tests and other 
soft data). Hydraulic properties and unknown 
stresses (e.g., recharge, poorly documented 
extraction rates, external boundary conditions) 
are represented with a high-dimension 
parameterisation scheme to express spatial 
heterogeneity. Following history matching, 
model forecasts are made with the ensemble 
of models, providing quantified uncertainty of 
the predictions of interest.
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Ensemble Variance Analysis
EVA operates on the assumption of a 
multivariate Gaussian relationship between 
the observation data and the prediction. 
It quantifies the expected reduction in 
uncertainty using covariance information 
derived from a set of simulations (i.e., an 
ensemble of model outputs). Thus, to conduct 
EVA, an ensemble of model-simulated 
outputs is required. This ensemble must 
include simulated outputs for both potential 
future data and the forecasts of interest. 
Conveniently, when using PESTPP-IES, an 
ensemble of model outputs is a byproduct of 
predictive uncertainty analysis. 

Let the vector composed of the sub-
vectors s and d denote outputs generated 
by a model Z simulated with uncertain 
parameters represented by the vector k.  
 

Vector s contains model outputs that 
correspond to predictions of interest. The 
vector d contains simulated outputs that 
correspond to as-of-yet uncollected data.

If the model Z is simulated many times, 
each time with a different sample of k, the 
ensemble of model outputs can be collected 
into a matrix from which the covariance 
between predictions and as-of-yet uncollected 
data can be calculated as:

From the above, and assuming a multi-
Gaussian distribution between a prediction s 
and measured data d, the expected posterior 
variance of the prediction can be calculated as:

Under the assumption of multi-Gaussian 
distribution, posterior variance of the 
prediction s is independent of the value 
of measured data d. Expected variance is 
the average variance of s given a value of 
d, across the ensemble. Thus, it provides 
a conservative lower bound of expected 
uncertainty reduction. Different values of s can 
be computed assuming different combinations 
of d to assess their relative value in reducing 
predictive uncertainty. As these calculations 
are computationally cheap, it becomes 
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Vector	s	contains	model	outputs	that	correspond	to	predictions	of	interest.	The	vector	d	contains	
simulated	outputs	that	correspond	to	as-of-yet	uncollected	data.	

If	the	model	Z	is	simulated	many	times,	each	time	with	a	different	sample	of	k,	the	ensemble	of	
model	outputs	can	be	collected	into	a	matrix	from	which	the	covariance	between	predictions	and	
as-of-yet	uncollected	data	can	be	calculated	as:	
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From	the	above,	and	assuming	a	multi-Gaussian	distribution	between	a	prediction	s	and	measured	
data	d,	the	expected	posterior	variance	of	the	prediction	can	be	calculated	as:		
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Under	 the	 assumption	of	multi-Gaussian	distribution,	 posterior	 variance	 of	 the	prediction	 s	 is	
independent	of	the	value	of	measured	data	d.	Expected	variance	is	the	average	variance	of	s	given	
a	 value	 of	 d,	 across	 the	 ensemble.	 Thus,	 it	 provides	 a	 conservative	 lower	 bound	 of	 expected	
uncertainty	reduction.	Different	values	of	s	can	be	computed	assuming	different	combinations	of	
d	 to	 assess	 their	 relative	 value	 in	 reducing	 predictive	 uncertainty.	 As	 these	 calculations	 are	
computationally	cheap,	it	becomes	feasible	to	wrap	them	within	global	optimizer	algorithms,	as	
described	below.	

Monitoring Network Optimisation 

Multi-objective	 optimisation	 was	 undertaken	 employing	 particle	 swarm	 optimisation	 (PSO;	
Kennedy	 and	 Eberhart	 1995)—a	 population-based,	 stochastic	 search	 algorithm	 inspired	 by	
natural	 swarm	behaviour—and	 the	NSGA-II	 algorithm	 (Deb	et	 al.	 2002),	which	uses	 fast	 non-
dominated	 sorting	 to	 efZiciently	 handle	 trade-offs	 among	multiple	 objectives.	 The	workZlow	 is	
implemented	using	the	open-source	software	PESTPP-MOU	(White	et	al.		2022).	

Optimisation	 objectives	 are	 quantities	 that	 the	 optimisation	 algorithm	 aims	 to	 minimise	 or	
maximise.	The	monitoring	optimisation	was	formulated	as	a	two-objective	optimisation:		

(1) maximise	total	uncertainty	reduction,	and		

(2) minimise	cost.		

For	the	case	described	herein,	we	consider	the	total	uncertainty	reduction	as	an	aggregate	of	the	
“percentage	uncertainty	reduction”	across	all	forecasts.	It	is	calculated	by	summing	percentage	
uncertainty	reductions	across	all	forecasts.	For	this	case,	we	simply	aim	to	minimize	aggregate	
uncertainty.	However,	more	complex	formulations	of	the	objective	function	are	possible,	such	as	
aiming	to	achieve	a	minimum	variance	for	a	given	prediction.		

Cost	is	calculated	as	the	total	number	of	samples	from	all	sites,	multiplied	by	the	average	cost	per	
sample.	This	value	does	not	account	for	variable	costs,	such	as	distance	travelled	between	sites,	
as	they	were	not	available	–	however,	it	could.	For	this	site	an	assumption	of	one	sample	per	year	
was	 made.	 However,	 more	 complex	 parameterisations	 are	 possible,	 such	 as	 optimising	 for	
sampling	frequency	and	duration.		

The	 optimisation	 algorithm	 explores	 the	 solution	 space	 by	 testing	 different	 combinations	 of	
monitoring	 locations,	 calculating	 their	 cost	 and	assessing	 their	worth	 at	 reducing	uncertainty.	
Outcomes	are	combinations	that	provide	the	maximum	uncertainty	reduction	for	a	given	cost	(or	
a	minimal	cost	for	a	given	uncertainty	reduction).		
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feasible to wrap them within global optimizer 
algorithms, as described below.

Monitoring Network Optimisation
Multi-objective optimisation was undertaken 
employing particle swarm optimisation (PSO; 
Kennedy and Eberhart 1995)—a population-
based, stochastic search algorithm inspired by 
natural swarm behaviour—and the NSGA-II 
algorithm (Deb et al. 2002), which uses fast non-
dominated sorting to efficiently handle trade-
offs among multiple objectives. The workflow 
is implemented using the open-source software 
PESTPP-MOU (White et al. 2022).

Optimisation objectives are quantities 
that the optimisation algorithm aims to 
minimise or maximise. The monitoring 
optimisation was formulated as a two-
objective optimisation: 
1.	 maximise total uncertainty reduction, 

and 
2.	 minimise cost. 
For the case described herein, we consider the 
total uncertainty reduction as an aggregate of 
the “percentage uncertainty reduction” across 
all forecasts. It is calculated by summing 
percentage uncertainty reductions across 
all forecasts. For this case, we simply aim to 
minimize aggregate uncertainty. However, 
more complex formulations of the objective 
function are possible, such as aiming to 
achieve a minimum variance for a given 
prediction. 

Cost is calculated as the total number 
of samples from all sites, multiplied by the 
average cost per sample. This value does not 
account for variable costs, such as distance 
travelled between sites, as they were not 
available – however, it could. For this site an 
assumption of one sample per year was made. 
However, more complex parameterisations 
are possible, such as optimising for sampling 
frequency and duration. 

The optimisation algorithm explores 
the solution space by testing different 
combinations of monitoring locations, 
calculating their cost and assessing their 
worth at reducing uncertainty. Outcomes 
are combinations that provide the maximum 
uncertainty reduction for a given cost (or 
a minimal cost for a given uncertainty 
reduction). 
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Results
The optimal trade-off between cost and 
uncertainty reduction is shown in Fig. 1. 
Referred to as the “pareto front”, this curve 
represents the set of optimal solutions in 
a multi-objective optimisation problem, 
where no objective can be improved without 
worsening at least one other. In other words, 
at any point along the curve, it is impossible 
to reduce uncertainty without incurring 
greater cost (and vice versa).

The y-axis on Fig. 1 is scaled to percentage 
of the maximum possible uncertainty 
reduction achievable by collecting data 
from all available sites. Outcomes show that 
approximately 85% of possible uncertainty 
reduction can be achieved with around 20% 
of the monitoring locations. This represents 
a substantial saving in terms of cost. As the 
number of sites in the monitoring network 
increases, there are diminishing returns. 
Most of the information gains are achieved 
from a small portion of the monitored sites. 

For comparison, the outcomes for an 
expert-knowledge (i.e., “manual”) designed 
monitoring plan are displayed in Fig. 1. 
The proposed plan provides sub-optimal 
uncertainty reduction. In other words, 
uncertainty could be reduced substantially 
further for cheaper. 

It remains incumbent on the decision-
maker to determine the acceptable trade-
off. This will always be case specific. For the 
site, a desired uncertainty reduction of at 
least 90% of achievable was specified by the 
decision-maker. The proposed monitoring 
configuration was reduced to 65 sites, 
approximately 30% of the total projected cost, 
assuming an average cost per sample over the 
project lifespan.

Conclusions
Data worth optimisation using EVA was 
employed to optimize data collection to 
inform prediction-driven modelling. This 
approach provided a sub-set of monitoring 
locations that would provide 90% of the 
information content of the entire network at 
30% of the cost. Furthermore, the optimised 
monitoring locations achieved better results 
than previously proposed “expert knowledge” 
derived locations, both in terms of cost and 
uncertainty reduction. 

The approach described herein provides 
an effective and computationally cheap 
approach to inform the design of data 
acquisition programs within a prediction-
driven modelling context. Although here 
it is employed for an existing network and 
targeting groundwater level measurements, 
the approach is readily extendible to other 
contexts and datatypes. 
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