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Abstract
Mining environments involve complex hydro-bio-geochemical systems. Reactive 
transport modeling (RTM) is essential to rigorously describe these processes. 
Yet, process-based RTM is computationally intensive and limited in practical 
applications. To mitigate such challenges, this paper provides a novel deep learning-
based surrogate accelerator, hidden-reactive-transport-neural-network (HRTNet), 
to simulate pyrite oxidation, a process of key importance for acid mine drainage. 
HRTNet relies on a flexible two-network architecture integrating chemical and 
physical equations. The model can effectively capture the desired spatio-temporal 
dynamics in a considerably reduced computation time (almost eight-fold). 
Additionally, HRTNet shows a good generalization capability covering a wide range 
of conditions beyond the training datasets.
Keywords: Mine waste weathering, machine learning, physics-chemistry-
informed neural network, pyrite oxidation, reactive transport modeling
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Introduction 
In mining settings, intricate geochemical 
and hydrogeological conditions interact 
at multiple scales. These systems 
usually involve mineral dissolution and 
precipitation, contaminant release and 
transport, gaseous species migration, and 
the eventual formation of acid mine drainage 
(AMD), which poses a severe pollution 
issue due to high concentrations of sulfate, 
elements of potential concern such as metals 
and metalloids, and low pH. The oxidation 
of sulfide minerals is one of the primary 
sources of AMD, where pyrite and pyrrhotite 
are principal minerals that generate acidic 
drainage in mine waste (Moncur et al. 2009; 
Kefeni et al. 2017; Simate and Ndlovu 2014). 
Pyrite oxidation is thus a main driver of the 
environmental and economical challenges 
associated with AMD (Chandra and Gerson 

2010). Effectively capturing the dynamics of 
these processes enables accurate prediction 
and monitoring of their environmental 
influences, thereby facilitating mitigation 
of pollution risks. Reactive transport 
modeling (RTM) is a sophisticated approach 
that can resolve these coupled processes, 
by integrating a wide range of physical, 
chemical, and biological processes in mining 
waste and mining-affected subsurface 
systems (Steefel et al. 2005; Xu et al. 2000; 
Battistel et al. 2019; 2021). 

While these process-based models 
are accurate and represent a rigorous 
formulation, they are often computationally 
intensive, resulting in limitations in 
many practical applications that require 
multiple model-based evaluations and risk 
assessments (Steefel 2019; Muniruzzaman 
and Pedretti, 2021). These challenges 
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mainly stem from the demand for solving 
a suite of highly coupled partial differential 
equations (PDEs). In recent years, numerous 
efforts have been devoted to mitigating the 
computational burden associated with 
the process-based RTM simulations, with 
surrogate models presenting promising 
potentials. Among these techniques, 
machine learning (ML) and deep learning 
(DL) based accelerators have received 
increasing attention, including successful 
applications in geochemical calculations 
(Jatnieks et al. 2016; Laloy and Jacques 2022; 
Demirer et al. 2023; Guérillot and Bruyelle 
2020; Leal et al. 2020), parameter upscaling 
(Prasianakis et al. 2020), and uncertainty 
and sensitivity analysis (Degen et al. 2022). 
So far, purely data-driven surrogate models 
have been the primary approach in diverse 
geochemical and transport problems like 
in hyporheic zone (Moeini et al. 2024), 
electrokinetic transport (Sprocati and Rolle 
2021; Sprocati et al. 2025), dolomitization 
process (Li et al. 2022), porous media 
transport (Marcato et al. 2023), and 
riparian zone (Yu et al. 2024). Unlike fully 
data-driven models, strategies combining 
geochemical or physical knowledge were 
developed to improve prediction accuracy 
while promising large speedups. These 
formulations consider governing knowledge 
either as a priori (De Lucia 2024) or a 
trigger of fully physical simulation when 
the surrogate predictions are implausible 
(De Lucia and Kühn 2021). Additionally, 
physics-based ML is another model that has 
been developed for geoscientific systems by 
integrating the solutions of the governing 
PDEs and data-driven methods using the 
non-intrusive reduced-basis model (Degen 
et al. 2023). Finally, physics-informed ML 
(PIML) has been a promising technique, 
which explicitly integrates governing 
physical laws into the learning process. This 
can be achieved by embedding PDE residuals 
in the loss function, as demonstrated by 
Raissi et al. (2019) in their work on physics-
informed neural networks (PINNs), or by 
encoding these laws directly into the neural 
network architecture (Rao et al. 2023; Liu  
et al. 2024).

Recently, PIML techniques have been 

successfully applied in various systems, yet 
contributions to accelerating process-based 
RTM are still scarce and require systematic 
studies. The work in this paper aims to 
contribute to this research gap. The study 
was inspired by the Hidden Fluid Mechanics 
(HFM) model provided by Raissi et al. (2020) 
to propose an intelligent surrogate model, the 
Hidden Reactive Transport Neural Network 
(HRTNet), which integrates the governing 
physical and chemical reaction laws. To 
this end, HRTNet is applied and tested for 
pyrite oxidation examples to evaluate its 
performance. HRTNet results were compared 
against the process-based RTM simulations 
to assess the accuracy and generalization 
capability of the proposed surrogate 
modelling approach. 

Methods 
We consider the study by Battistel et al. (2019) 
as a model problem, relevant for mine waste 
weathering processes, for investigating pyrite 
oxidation reactive fronts in 1-D and 2-D 
porous media. The left panel in Fig. 1 shows 
the 1-D and 2-D flow-through experiments 
described by Battistel et al. (2019). In 1-D 
case, a cylindrical glass column was used, 
where a pyrite inclusion (4 cm long, placed 
in the middle, with 67.63 mol/Lwater pyrite) 
was embedded within a sandy matrix. In 
contrast, a quasi two-dimensional flow-
through chamber, packed with a sandy matrix 
containing a rectangular pyrite inclusion 
(located at 5 cm from the inlet and 10 cm 
from bottom, with 33.82 mol/Lwater pyrite), 
was used for the 2-D experiment. These 
experiments were performed by continuously 
injecting an oxic solution, and a non-invasive 
optode technique was used to monitor 
oxygen front propagation at high-spatial and 
temporal resolution. O2 sensor strips adhered 
to the inner walls of the flow-through 
setups are shown in pink color in Fig. 1. 
A physically homogeneous but chemically 
and mineralogically heterogeneous system is 
generated by keeping the same grain sizes of 
the sand and pyrite.

We leverage the same process-based RTM 
as used by Battistel et al. (2019) to simulate 
the 1-D and 2-D flow-through experiments. 
The model is a basis for generating the 
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Figure 1 Schematic diagram of the problem setup and overall workfl ow of the proposed surrogate modeling 
approach. Th e left  panel displays exemplary reactive transport systems involving 1-D and 2-D fl ow-through 
setups by Battistel et al. (2019). Th e right panel is the surrogate model architecture showing its learning 
mechanism. 

training data fed into the HRTNet (Fig. 1, 
right panel). Th e RTM process relies on the 
chemical reaction:
FeS1.72 + 3.08O2 + 0.72H2 Fe2+ + 
1.72SO4

2- + 1.44H+           (1)

where Fe2+, SO4
2-, and H+ are the main 

released oxidation products, implying O2
consumption and acidity generation. Pyrite 
oxidation was simulated as kinetically 
controlled reactions with the rate law 
proposed by Williamson and Rimstidt (1994):

              (2)

According to the chemical reactions and the 
rate law, the governing mass conservation 
equations for reactive transport in 1-D and 
2-D fl ow-through systems are expressed as:

              (3)

              (4)

where H (= 31.25) is Henry’s coeffi  cient 
for oxygen. Note that a mass transfer term 
taking into account the exchange of oxygen 
between the aqueous and gaseous phases 
was considered in the transport equations to 
account for the eff ect of entrapped gas bubble 
in the porous media. We integrate the pyrite 
reaction law and the governing PDEs into 
the neural networks by designing a tailored 
two-network architecture (Net 1 and Net 2) 
shown in Fig. 1 (right panel). HRTNet aims 
to learn a mapping f(t, x ,m0 ) → c , where x is 
a spatial vector with component z for the 1-D 
column and x, z for the 2-D fl ow-through 
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FeS!.#$ + 3.08O$ + 0.72H$O → Fe$% + 1.72SO&$' + 1.44H%											(1)						

where	Fe$%,	SO&$',	and	H% 	are	 the	main	 released	oxidation	products,	 implying	O$ 	consumption	
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rate	law	proposed	by	Williamson	and	Rimstidt	(1994):	
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where	𝐻𝐻	(=	31.25)	is	Henry’s	coefDicient	for	oxygen.	Note	that	a	mass	transfer	term	taking	into	
account	the	exchange	of	oxygen	between	the	aqueous	and	gaseous	phases	was	considered	in	the	
transport	equations	to	account	for	the	effect	of	entrapped	gas	bubble	in	the	porous	media.	We	
integrate	the	pyrite	reaction	law	and	the	governing	PDEs	into	the	neural	networks	by	designing	a	
tailored	two-network	architecture	(Net	1	and	Net	2)	shown	in	Fig.	1	(right	panel).	HRTNet	aims	
to	 learn	 a	 mapping	𝑓𝑓(𝑡𝑡,	xx,𝑚𝑚,) → c ,	 where	xx 	is	 a	 spatial	 vector	 with	 component	𝑧𝑧 	for	 the	 1-D	
column	and	𝑥𝑥, 𝑧𝑧	for	the	2-D	Dlow-through	system.	𝑚𝑚,	is	the	initial	pyrite	concentration,	which	is	
zero	in	the	purely	sandy	media	where	pyrite	is	absent,	and	𝑐𝑐	represents	the	target	concentrations.	
This	architecture	ensures	that	HRTNet	approximates	𝑓𝑓	and	adheres	to	the	underlying	chemical	
and	physical	laws.	

Net	1	is	a	pure	data-driven	network	that	outputs	the	pyrite	concentration,	𝑚𝑚,	which	acts	as	one	of	
the	inputs	of	Net	2,	and	is	used	in	the	pyrite	reaction	rate	calculations.	The	input	layer	of	Net	2	
contains	an	extra	variable	IX,	an	identiDier	to	disambiguate	where	pyrite	is	absent	when	multiple	
training	 datasets	 are	 used.	 Net	 2	 Dirst	 predicts	 the	 target	 concentrations.	𝑅𝑅pyr 	is	 subsequently	
calculated	by	𝑚𝑚,	[O$]/	and	[H%],	which	is	further	used	in	calculating	the	PDE	residuals	obtained	
with	 the	 help	 of	 automatic	 differentiation	 to	 construct	 the	 loss	 function.	 The	 two	 networks	
interplay	with	each	other	by	minimizing	the	loss.	Thus,	HRTNet	incorporates	the	chemistry-	and	
physics-informed	learning	in	a	Dlexible	way	to	capture	the	spatial	and	temporal	dynamics	with	
various	 initial	 pyrite	 concentrations.	 The	 half-transparent	 neuron	𝑥𝑥 	in	 both	 networks	 (Fig.	 1)	
allows	identifying	between	1-D	and	2-D	cases.	Table	1	lists	the	parameters	with	their	values	used	
to	calculate	the	PDE	residuals	for	1-D	and	2-D	Dlow-through	setup.	
Table	1	Parameters	and	their	values	used	in	the	PDE	residuals	of	HRTNet	in	1-D	and	2-D	flow-through	setup.	
 

Parameter	 Description	 1-D	column	 2-D	flow-through	

𝜃𝜃!	[-]	 Volumetric	water	content	 0.347	 0.358	

𝜃𝜃"	[-]	 Volumetric	gas	content	 0.033	 0.022	

𝑞𝑞	[m/s]	 Specific	discharge	 6.03 × 10#$	 6.60 × 10#$	

𝐃𝐃	[m%/s]	 Dispersion	coefficient		 2.50 × 10#&	 4.41 × 10#&;	
1.02 × 10#&#	
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system. m0 is the initial pyrite concentration, 
which is zero in the purely sandy media where 
pyrite is absent, and c represents the target 
concentrations. Th is architecture ensures that 
HRTNet approximates f and adheres to the 
underlying chemical and physical laws.

Net 1 is a pure data-driven network that 
outputs the pyrite concentration, m, which 
acts as one of the inputs of Net 2, and is used 
in the pyrite reaction rate calculations. Th e 
input layer of Net 2 contains an extra variable 
I

0 

, an identifi er to disambiguate where pyrite 
is absent when multiple training datasets 
are used. Net 2 fi rst predicts the target 
concentrations. Rpyr is subsequently calculated 
by m, O2]

w and [H+], which is further used in 
calculating the PDE residuals obtained with the 
help of automatic diff erentiation to construct 
the loss function. Th e two networks interplay 
with each other by minimizing the loss. Th us, 
HRTNet incorporates the chemistry- and 
physics-informed learning in a fl exible way 
to capture the spatial and temporal dynamics 
with various initial pyrite concentrations. Th e 
half-transparent neuron x in both networks 
(Fig. 1) allows identifying between 1-D and 
2-D cases. Table 1 lists the parameters with 
their values used to calculate the PDE residuals 
for 1-D and 2-D fl ow-through setup.

Results
We trained HRTNet based on the results 
of the forward process-based reactive 
transport simulations in 1-D and 2-D 
systems. In 1-D column, the training data 
consists of four datasets with various initial 
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pyrite concentrations, [30; 45; 60; 75] mol/
Lwater. Fig. 2 compares HRTNet prediction 
results and the process-based simulation at 
different reaction hours with an initial pyrite 
concentration of 52 mol/Lwater, which was not 
part of the training data.

HRTNet performs consistently with RTM 
in all cases considering the prediction of 
dissolved oxygen O2

w, oxygen concentration 
in the gaseous phase O2

g and remaining pyrite 
concentration. Slight discrepancies between 
HRTNet and RTM in iron, sulfur, and 
proton profiles after the reaction zone can 
be observed, especially at early time (t = 3.2 
h in Fig. 2). Overall, HRTNet can accurately 
capture the spatiotemporal dynamics with 
varying initial pyrite concentrations, a 
remarkable achievement among the existing 
DL-based surrogate models. This strong 
performance stems from HRTNet’s flexible 
and generalized learning mechanism. Its 
two-network structure effectively integrates 
governing physics and chemistry principles, 
enabling HRTNet to achieve outstanding 

predictions beyond the training conditions.
Similarly, in the 2-D flow-through 

case, HRTNet was trained on training data 
consisting of multiple datasets from RTM, 
with initial pyrite concentrations, [10; 20; 30; 
40] mol/Lwater. Fig. 3 compares the HRTNet’s 
predictions on the second row with ground 
truth from RTM on the first row.

The initial pyrite concentration is 33.82 
mol/Lwater, the same as in the experimental 
setup. The outstanding agreement 
demonstrates that HRTNet also performs 
very well in 2-D flow-through.

Conclusion
The proposed HRTNet approach 
systematically integrates the governing 
chemical and physical equations with neural 
network architecture to allow transport and 
geochemistry-aware learning. The model 
relies on a flexible architecture based on two 
networks sharing a common loss function, 
allowing the incorporation of data-driven and 
physics-chemistry-informed contributions. 

Parameter Description 1-D column 2-D flow-through

θw [-] Volumetric water content 0.347 0.358

θg [-] Volumetric gas content 0.033 0.022

q [m/s] Specific discharge 6.03 × 10-6 6.60 × 10-6

D [m2/s] Dispersion coefficient 2.50 × 10-9 4.41 × 10-9;
1.02 × 10-9#

λ [1/s] Mass transfer coefficient 1.95 × 10-6 4.26 × 10-6

#The first and second value refers to the longitudinal and transverse dispersion coefficients respectively

Table 1 Parameters and their values used in the PDE residuals of HRTNet in 1-D and 2-D flow-through setup.

Figure 2 Comparison between HRTNet predictions and RTM simulations with initial pyrite concentration of 
52 mol/Lwater in 1-D column setup. Blue lines show ground truth from RTM simulations and the red dashed lines 
present the predictions obtained from the intelligent surrogate model.
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The two components can effectively capture 
the data patterns and the reactive transport 
dynamic features.

We considered examples including pyrite 
oxidation in 1-D and 2-D geochemically 
heterogeneous domains to evaluate HRTNet’s 
performance. The results reveal that the 
predictions obtained by the trained surrogate 
model agree well with those from mechanistic 
RTMs. Furthermore, the physics- and 
chemistry-informed learning was promising 
to achieve a good generalization capability, 
because HRTNet could predict the desired 
spatio-temporal dynamics for a wide range 
of initial concentrations beyond the training 
datasets. Based on these encouraging results, 
the proposed approach could be extended to 
more complex systems in which not only pyrite 
oxidation but also other reactive processes 
control the formation of acid mine drainage.
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Figure 3 HRT Predictions in 2-D flow-through chamber at t=50 h: top row – RTM, middle row – HRTNet, 
bottom row – vertical profiles at x = 13 cm for pyrite and x = 48 cm for others. The black dashed lines represent 
the cross section where oxygen sensor is placed at x = 48 cm, except for pyrite for which profile at x=13 cm is 
shown: the corresponding results are on the third row. The red squares represent ground truth from RTM and 
the black lines are the predictions of HRTNet.
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