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Abstract
The Iberian Pyrite Belt (IPB) is in the southwest Iberian Peninsula. Due to heavy 
mining and processing of sulfide ores, large amounts of historic mining wastes are 
dispersed along this area, which are called as “legacy sites”. Many of these wastes 
contain large quantities of metals and metalloids (e.g. As, Cd, Cu) including some 
potentially Naturally Occurring Radioactive Materials (NORM), which can constitute 
an important environmental threat and a substantial potential public health. Therefore, 
a novel radioactive and physicochemical characterization of the most relevant mining 
wastes was performed, including potential lines of valorization. 
Keywords: Mining wastes, radioactive characterization, Iberian pyrite belt, 
radionuclides, radiological hazard index

Introduction 
The Iberian Pyritic Belt (IPB), located in the 
southwest of the Iberian Peninsula, hosts 
the largest concentration of polymetallic 
massive sulfides deposits in the world. This 
area has been heavily mined for some 5000 
years, but was particularly intense during 
the English period, especially between 1870 
and 1930 (Yesares et al. 2015), generating a 
large amount of mining waste, belonging to 
the more than 100 mines located in this area, 
most of them abandoned. These wastes have 
a high content of metals/metalloids such 
as As, Cu, Zn, and Pb. Moreover, they are 
Naturally Occurring Radioactive Materials 
(NORM) wastes since metals extraction 
from mined minerals can generate materials 
with naturally occurring radioactive activity 
according to the EU regulation. Therefore, its 
radiological implications have to be evaluated. 
In addition, the toxic metals, metalloids, and 
associated contaminants as sulfursuppose a 
potential environmental risk and problems 

for public health, as they are close to towns 
and sensitive aquatic ecosystems(Álvarez-
Valero et al. 2009).

Considering the potential environmental 
and human health problems related to these 
wastes, the main objective of this work has 
been to perform a comprehensive radioactive 
characterization of the different mining 
wastes located at these mines, as well as the 
evaluation of their radiological risks.

Methods 
Three mining complexes representative of the 
mines developed in the IPB were selected for 
study: 1) Sotiel Coronada (SC), 2) Cueva de la 
Mora (CM), and 3) Tharsis (TH) (Almodóvar 
et al. 2019). The main processes developed 
by these mine complexes were extraction of 
polymetallic ores producing shales rejects 
(SH), pyrite flotation sludges (FP), roasted 
pyrite for sulfuric acid production (RP), 
pyrites leached with sulfuric acid (PY) and 
slags from minerals smelting (SL) (Tornos et 
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Figure 1 Locations of studied mines in the Iberian Pyrite Belt (A), and associated mine waste sample sites at 
Sotiel Coronada (B), Cueva de la Mora (C) and Th arsis (D). Each colour represents an area with the same 
type of waste.
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al. 2000). In Fig. 1 can be seen the locations 
of mines in relation to the IPB and associated 
samples.

Regarding the methodology, first the most 
characteristic waste piles in the area were 
sampled. One sample (1 kg) was taken per 
mound, but in case the extent was too large, 
several samples were taken from that area for 
better comparison. The mining wastes were 
collected subsurface with a shovel, eliminating 
the upper 5 cm most affected by weathering. 
The samples were stored in hermetically 
sealed bags. Subsequently, pre-treatment 
(drying, milling…) and the measurement 
of physicochemical parameters were carried 
out. Afterwards, multi-elemental analysis was 
carried out by ICP-MS/ICP-OES & XRF and 
radionuclide concentrations measurement by 
alpha and gamma spectrometry. Radiological 
risk indices (Raeq, Hex, Hin and Ic; Eke et al. 
2024 ; Paschoa & Steinhäusler 2010) were 
also calculated. Quality control was applied 
through blanks, replicates, certified reference 
samples (IAEA-375 & IAEA-327) and inter
comparisons. 

Results
The average concentrations of the major 
elements in percentage are shown in Fig 2. 
Each residue has characteristic concentra
tions for each element. The main elements are 
Fe, Si and Al. The leached pyrites and flota

tion residues have a high sulfur content, 3-4 
orders of magnitude higher than undisturbed 
soil. The pyritic waste could generate a 
possible environmental impact from acid 
mine drainage (AMD) (Moreno-González et 
al. 2022). Also, all wastes have concentrations 
3-4 orders of magnitude above typical soil in 
metals/metalloids such as As, Cu, Zn and Pb, 
which could lead to high toxicity (Álvarez-
Valero et al. 2009).

The mean values of natural radionuclide 
activity concentrations for different wastes are 
shown in Fig 3 and Fig 4. For the 238U series, it 
can be seen that there is secular equilibrium 
between the radionuclides, and that each 
waste has distinctive activity concentrations, 
with slag and leached pyrites having the 
highest activity concentrations. The observed 
values for the waste are consistent with those 
of typical soil (238U: 26-82 Bq/kg ; Monty 
2001). For the 232Th decay series and for 
40K the same conclusions can be applied, 
distinctive values for each residue are those 
expected for undisturbed soil (232Th: 11-84 
Bq/kg; 40K: 25-1650 Bq/kg; Charles 2001).

The radiological risk indices calculated 
were radium equivalent activity (Raeq), the 
external (Hex) and internal (Hin) radiation 
indices and the activity concentration index 
for building materials (Ic) (Fig 4). These are 
defined by the expressions (Eke et al. 2024; 
Paschoa & Steinhäusler 2010):

Figure 2 Average concentrations in percentage of the major elements of pyrite flotation (FP), pyrite roasting 
(RP), smelting slags (SL), leached pyrite (PY) and shale rejects (SH).
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Raeq (Bqkg-1) = CU + 1.43CTh + 0.077CK      (1)

Hex = 	    +         + 		             (2)

Hin = 	    +         + 		             (3)

IC = 	    +         + 		             (4)

where CU, CTh, CK and CRa are the activity 
concentrations of 238U, 232Th, 40K and 226Ra 
respectively in Bq/kg. The Raeq values ob
tained are less than 370 Bq/kg, so they can be 
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marketed in the USA. The Hex and Hin values 
are below the limit value 1, so they do not pose 
a radiological risk (Eke et al. 2024). Likewise, 
the Ic being less than 1 in all samples, they 
can be used as building materials without 
radiological restrictions (Santos et al. 2022).

Conclusions
A multi-elemental analysis of different 
mining wastes from 3 mines located in the 
FPI: Sotiel Coronada, Cueva de la Mora 
and Tharsis has been carried out, with the 
following conclusions:

Figure 3 238U series activity concentrations of pyrite flotation (FP), pyrite roasting (RP), smelting slags (SL), 
leached pyrite (PY) and shale rejects (SH).

Figure 4 232Th series and 40K activity concentrations of pyrite flotation (FP), pyrite roasting (RP), smelting 
slags (SL), leached pyrite (PY) and shale rejects (SH).
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1. All wastes have concentrations 3-4 orders 
of magnitude above typical soils for 
metals/metalloids with high toxicological 
implications.

2. Th e mining wastes have been radioactively 
characterised, with results for activity 
concentrations of natural radionuclides in 
the range for typical Spanish soils. 

3. Th e calculated radiological risk indices 
demonstrate that the wastes do not pose 
a radiological risk.

4. Finally, these wastes comply with the 
Spanish regulations required for gamma 
radiation emitted as construction 
materials. 
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1. All wastes have concentrations 3-4 orders 
of magnitude above typical soils for 
metals/metalloids with high toxicological 
implications.

2. The mining wastes have been radioactively 
characterised, with results for activity 
concentrations of natural radionuclides in 
the range for typical Spanish soils. 

3. The calculated radiological risk indices 
demonstrate that the wastes do not pose 
a radiological risk.

4. Finally, these wastes comply with the 
Spanish regulations required for gamma 
radiation emitted as construction 
materials. 
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where	CU,	CTh, CK and	CRa are	the	activity	concentrations	of	238U,	232Th,	40K and	226Ra respectively	in	
Bq/kg. The	Raeq values	obtained	are	less	than	370	Bq/kg,	so	they	can	be	marketed	in	the	USA.	The	
Hex and	Hin values	are	below	the	limit	value	1,	so	they	do	not	pose	a	radiological	risk	(Eke	et	al.	
2024). Likewise,	 the	Ic	being	less	than	1	 in	all	samples,	 they	can	be	used	as	building	materials	
without	radiological	restrictions (Santos	et	al.	2022).

Figure	5 Average values	of	radiological	risk	indices	Raeq (Bq/kg),	Hex, Hin and	Ic for	pyrite	^lotation	(PF),	
pyrite	roasting	(RP),	smelting slag	(SL),	leached	pyrite (PY)	and	slate	rejects	(SH).

Conclusions
A	multi-elemental	 analysis	 of	 different	mining	wastes	 from	 3	mines	 located	 in	 the	 FPI:	 Sotiel	
Coronada,	Cueva	de	la	Mora	and	Tharsis	has	been	carried	out,	with	the	following	conclusions:

1. All	wastes	have concentrations	3-4	orders	of	magnitude	above	typical	soils	for	
metals/metalloids	with	high	toxicological	implications.

2. The	mining	wastes have been	radioactively	characterised,	with	results	for activity	
concentrations	of	natural	radionuclides	in	the	range	for	typical Spanish soils.	

3. The	calculated	radiological	risk	indices	demonstrate	that	the	wastes	do	not	pose	a	
radiological	risk.

4. Finally,	these	wastes	comply	with	the	Spanish	regulations	required	for	gamma	radiation	
emitted	as	construction	materials.	
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