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Abstract
Constructed wetlands (CWs) have been used for treating acid mine drainage (AMD), 
yet their metal removal mechanisms remain unclear. Herein, machine learning (ML) was 
employed to predict multi-metal removal efficiencies, with XGBoost achieving highest 
accuracy (R² > 0.8) for total Fe, Mn, Al, and Zn removal. Feature importance analysis 
identified operation days (1–185) and inflow chemical oxygen demand (COD, 6.5–1027.6 
mg/L) as dominant predictors. Partial dependence plots revealed interactions between 
predictors. Inflow parameters contributed 57.6% to metal removal, surpassing time series 
and wetland properties. This study provides data-driven insights for optimizing CWs in 
AMD treatment.
Keywords: Acid mine drainage; Machine learning; Constructed wetland; Metal 
removal efficiency
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Introduction 
Acid mine drainage (AMD), generated 
from sulfide mineral oxidation, poses severe 
environmental risks due to high metal 
content and acidity (Younger et al., 2002; 
Stumm and Morgan, 2013; Blowes et al., 
2005). Constructed wetlands (CWs) offer 
sustainable AMD treatment through metal 
precipitation and biological processes (Jouini 
et al., 2020), yet their performance is affected 
by a variety of factors. Traditional statistical 
methods fail to capture these complex 
interactions inherent in such systems, while 
machine learning (ML) has shown promise in 
decoding multivariate systems (Palansooriya 
et al., 2022). Various ML methods, such as 
Random Forest (RF), Extreme Gradient 
Boosting (XGBoost), k-Nearest Neighbors 
(kNN) and Neural Networks (NN), have been 
utilized to monitor and map contaminants in 
soil (Wu et al., 2013) and groundwater (Lopez 
et al., 2021). However, ML applications in 
CWs for AMD treatment remain limited. 
This study aims to bridge this gap by 
developing five ML models to predict multi-
metal removal efficiencies (total Fe, Mn, Al, 

Zn). As the quality of the dataset brought into 
a model profoundly affects the validity of the 
model (Briscoe and Marin, 2020; Kim et al., 
2022), it was crucial to ensure the robustness 
of the initial datasets. Therefore, we devoted 
much effort to the construction of the dataset 
and feature engineering to obtain a practice-
oriented dataset. This data-driven ML 
approach elucidated the complex interactions 
in constructed wetlands, providing a deeper 
understanding of how varying parameters 
affect the removal efficiency of metals in 
AMD treatment.

Materials and methods 
Data from 31 published studies (from 2006 
to 2023) were collected, focusing on CWs 
treating AMD. Key parameters included 
wetland properties (length, width, height, 
plant type), inflow/outflow parameters 
(pH, COD, metals concentration), and 
time series (operation days). Missing 
data were imputed using RF, Histogram 
Gradient Boosting Regression (HGBR) 
and Hot Deck imputation, with outliers 
removed via Kolmogorov-Smirnov tests. 
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The final dataset comprised 354 data points 
with 29 features and 7 target variables 
(total Fe, Mn, Al, Zn, Ni, Co, Cr removal 
efficiencies). To simplify the ML model and 
improve its performance, feature filtering 
was performed based on feature correlation 
and ML-based feature importance analysis 
(Palansooriya et al., 2022). Hierarchical 
clustering grouped correlated features 
based on Pearson correlation coefficients 
(PCC). Further, feature importance analysis 
was conducted with ML-based model to 
determine the significance of each feature 
in predicting the target variable (Zhu et al., 
2019). By integrating results from feature 
importance and correlation analysis, the 
most important feature within a cluster was 
selected as input features. 

RF (Zhao et al., 2023), XGBoost, Support 
Vector Regression (SVR) (Palansooriya et al., 
2022), kNN (Yin et al., 2024) and Artificial 
Neural Network (ANN), were selected for 
this study and built based on Python 3.9.7. 
StandardScaler in Scikit-Learn (version 
1.4.1.post1) was used to standardize the input 
features. Following data standardization, 80% 
of data were randomly extracted from each 
input dataset and used for model training, 
while the remaining 20% were used for testing 
(Yin et al., 2024; Zhang et al., 2023). The 
method of grid search with cross-validation (5-
fold) was employed during the initial training 
process to conduct hyperparameter tunning, 
aiming to enhance model performance and 
mitigate the risk of overfitting (Yan et al., 
2021; Bergstra and Bengio, 2012; Zhu et al., 
2023). The coefficient of determination (R2) 
and root-mean-square error (RMSE) were 

Figure 1 The flowchart provides a detailed overview of the strategy employed for predicting the efficiencies of 
metals removal in AMD treated by constructed wetlands using a machine learning framework. Note: FCC: 
feature correlation and clustering; MFI: model-based feature importance; FE: feature engineering; TFe: total Fe.

utilized to compare the prediction accuracy 
and quantify the prediction performance 
(Hu et al., 2022). Feature importance was 
assessed using SHapley Additive exPlanations 
(SHAP). Partial dependence plots (PDPs) 
were utilized to visualize the interaction 
effects between key predictors (e.g., inflow 
COD and operation days) on metal removal 
efficiency. Fig. 1 shows the framework and 
detailed steps for this study.

Results and discussion 
Across the initial dataset, missing data were 
identified for 19 variables. Subsequent the 
complete dataset (Dataset A) is obtained by 
missing data filling based on RF, HGBR and 
Hot Deck imputation methods. Following 
the completion of dataset filling, an extensive 
feature analysis ensued, which included 
PCC, hierarchical clustering (Fig. 2a) and 
model-based feature importance analysis  
(Fig. 2b). Inflow COD was discovered to be the 
most important feature for predicting metal 
removal efficiencies. To refine the dataset 
and enhance model generalization while 
reducing computational complexity, a feature 
filtering process which involved integrating 
the outcomes of hierarchical clustering 
with feature importance assessments was 
conducted. Following this procedure, six 
representative features were selected from 
Dataset A to form Dataset B. Despite the 
apparent optimality of dataset B from an ML 
perspective, it is crucial to acknowledge that 
the selection of input features based solely 
on their correlation and importance may not 
consistently adhere to domain expertise and 
real-world necessities. Therefore, through the 
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integration of particle experiment conditions 
and feature analysis results, Dataset C was 
built. Th ree datasets were defi ned:

Dataset A: All features and targets (full 
dataset).

Dataset B: Six most important features 
(infl ow COD, infl ow pH, outfl ow EC, outfl ow 

Figure 2 Input feature analysis: (a) hierarchical clustering and (b) feature importance from the XGBoost model. 
Note: the prefi x “i_” represents infl ow parameters, while the prefi x “o_” represents outfl ow parameters.

Mn, outfl ow TFe, outfl ow SO₄2-).
Dataset C: Six practical features (infl ow 

COD, infl ow pH, infl ow acidity, infl ow EC, 
wetland height, operation days), selected 
based on monitoring feasibility and domain 
expertise, alongside the assessment of feature 
importance and correlation.

Figure 3 Th e predictive performance demonstration of the optimal model XGBoost for (a) TFe removal 
effi  ciency, (b) Mn removal effi  ciency, (c) Al removal effi  ciency, and (d) Zn removal effi  ciency based on dataset 
C, evaluated using R2 and RMSE as assessment metrics. RMSE = root-mean-square error.
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In assessing the fundamental predictive 
performance of diff erent models, Dataset A, 
encompassing all inputs from the full dataset 
was utilized. Th is strategy aimed to mitigate 
the potential reduction in predictive accuracy 
resulting from the exclusion of valuable 
features by Datasets B and C.

Five ML models (RF, XGBoost, SVR, 
kNN, ANN) were evaluated for predicting 
metal removal effi  ciencies (Fe, Mn, Al, Zn). 
XGBoost achieved the highest accuracy (R² 
> 0.8) across all datasets. Dataset A, with 
comprehensive features, yielded the best 
predictions, while datasets B and C showed 
slight declines due to feature selection. 
XGBoost demonstrated robust performance 
on the test set, particularly for TFe and Mn 
removal (Fig 3).

In accordance with previously published 
research, both Fe and Mn were identifi ed as 
two key metals requiring particular attention 
in the treatment of AMD using constructed 
wetlands (Chen et al., 2023; Singh and 
Chakraborty, 2020). During the process of Fe 
conversion to hydroxides, the transformation 
of aluminum oft en accompanies (Singh 
and Chakraborty, 2020). Additionally, 
research indicated that aluminum played 
a signifi cant role in plant growth and can 
mitigate the toxicity of metals such as Fe, 
Mn and H+ in acidic soils (Nguegang et al., 
2022). Furthermore, it was found that the 
concentration of Zn signifi cantly exceeds the 
standard limits. Th erefore, this study focuses 
on predicting the removal effi  ciency and 

Figure 4 Infl uential factors analysis based on dataset C and the optimal XGBoost model: (a) feature importance 
assessment based on XGBoost model and (b) Shapley additive explanation method.

analyzing the infl uential factors of TFe, Mn, 
Al and Zn. Th is aligns with the emphasis on 
key pollutant metals in relevant published 
studies (Singh and Chakraborty, 2020).

To quantitatively decipher the factors 
infl uencing the prediction of metal removal 
effi  ciencies, we employed the SHAP analysis 
on optimal model to refl ect the importance 
of these factors (Fig. 4a, b). Th e comparison 
of feature importance rankings between the 
two analysis methods reveals discrepancies, 
but infl ow COD and operation days were 
both considered to be the key factors. PDPs 
revealed nonlinear relationships between 
predictors and metal removal effi  ciency (Fig 
5). For example, Fe removal effi  ciency peaked 
at low COD (<300 mg/L) and declined aft er 
80 days of operation. Mn removal effi  ciency 
was highly sensitive to COD, with negative 
removal observed at high COD (>800 mg/L). 
Th ese fi ndings highlight the importance 
of optimizing COD levels and operational 
duration for eff ective metal removal.

Conclusions
In this study, we utilized ML to predict and 
analyze multi-metal removal effi  ciencies in 
constructed wetlands treating AMD. Th e 
main fi ndings are summarized as follows:
• Five ML models were developed, with 

the XGBoost model emerging as the 
most eff ective, achieving high predictive 
accuracy (R² > 0.8) for the removal ef-
fi ciency of total iron, manganese, alumi-
num and zinc.
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Figure 5 Th e interaction between infl ow COD and operation days was analyzed to assess its impact on the 
(a) TFe removal effi  ciency, (b) Mn removal effi  ciency, (c) Al removal effi  ciency, and (d) Zn removal effi  ciency.

• Detailed feature analysis using the 
XGBoost model identifi ed operation 
days (1–185) and infl ow COD (6.523–
1027.631 mg/L) as signifi cant predictors 
of metal removal effi  ciency. Th ese factors 
were found to have a substantial impact 
on the eff ectiveness of the wetland treat-
ment process.

• Th e empirical categories for metal remov-
al effi  ciency, ranked by importance, were 
wetland infl ow parameters in fi rst place, 
followed by time series, and wetland 
properties in last place. Infl ow parameters 
were quantifi ed to exert the highest infl u-
ence on metal removal effi  ciency at 57.6%.

• Partial dependence plots elucidated the 
non-linear relationships between key 
predictors and metal removal effi  cien-
cies. Th is analysis revealed that specifi c 
ranges of operation days and COD levels 

are critical for optimizing the removal 
processes, providing actionable insights 
for the monitoring and management of 
constructed wetlands.

Th e fi ndings off er a foundation for further 
research and practical applications aimed at 
enhancing the performance of constructed 
wetlands in treating acid mine drainage.
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