COMPLEX CONTINUUM MODEL FOR DESCRIPTION OF THE
SEMULTANEOUS SOLID-FLUID MOVEMENTS

Richter, R. and Bobok, E.

ABSTRACT : The purpose of this paper is to set out the fundamental concepts,
definitions and laws of continuum mechanics applying for non-homogenous systems
of rock, water and gas. In this treatise all scalar, vector and tensor fields
are multiplied, as multiplied the number or the phases. 0On the basis of these

simul taneous field concept the equations of change for mass, momentum and energy
are presented.

RESUME : L'objectif de cet article est d'établir les fondements du mode d'expo-
sé des mouvements simultanés des systémes non homogénes de composants continus

des solides et des liquides. Dans notre description, tous les champs scalaires,
vectoriels et tensoriels se multiplient en fonction des nombres de phases. Nous
avons introduit les é€quations de compatibilité, les &quations des mouvements et
les équations de 1'énergie sur la base de la théorie des fonctions spatiales.

RESUMEN : El objetivo de esta comunicacidnes establecer los conceptos fundamen-
tales, definiciones y leyes, relativos a los movimientos simultaneos en siste-
mas no homogeneos de roca, agua y gas. En esta descripcidn, todas las magnitudes,
ya sean escalares, vectoriales o tensoriales, quedan multiplicadas por el nime-
ro de fases. Sobre la base de la teoria de funciones espaciales hemos introducido

ecuaciones de compatibilidad, del movimiento, y de transferencia de masas y ener-
gia,
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The need to investigate the mechanical properties of rock has
especially stimulated research in a field where interactions
occur between the solid rock and a fluid phase: water or gas.
This paper sets out a new mathematical foundation of the mecha-
nical behaviour of rock with water or gas in its pores. It does
not attempt to give direct solutions for mining or engineering
problems, We wish this paper could be a preliminary condition
for the later applications.

The base of this work is the apparatus of continuum mechsanics,
Our fundamental agsumption is that the multicomponent sclid-
-fluid system can be considered 2s a complex continuum., The de-
tailed fine structure of the rock and the fluid in its pores
can be replaced by a continuous model of matter having to some
extent continuum properties, The essential mathematical idea of
continuum model is that the real properties of matter are subg-
tituted by continuously distributed field functions of these
properties for exemple: density, stress, strain, displacement,
gravity force etc, These physical fields are multiplied simul-
taneously for multicomponent mechaenical systems as they follow:

Qg = Qg /T,t/ Qp = Qyp /T,t/ Qe = Qg /T,t/
Vg = Vg It/ Vp = Vp /T Ty = Ty [
Fs = B /Tt/ Ep = Ep /T,t/ Fo = E, /T,t/

The indices S, F and G refer to the solid, liquid and the gas
phases. Like the density, velocity and stress similar multipli-
cation is obtained for other scalar, vector and tensor fields,
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Thus the material derivatives are also multipl‘ied:

'doo 3 o -

= + /VSV/ eoe
dtg dt
dov aco -

= / V/ eeos
atp 9t O F

d

= 9.. + /‘-V'GV/ Py

dt, 9t

Assuming that the pores can be ignored individually it is con-
venient to imagine the infinitesimal volume of the complex con-
tinuum containing many pores to interpret a scalar field of po-
rosity by definition

av
$ /T, t/ = —Rore

av

If § /Tyt/ is a continuous field and the pores are filled per-
fectly with liquid and gas, we get for the infinitesimal volu-
me

dV = dVg + dVp + AV, = /1 - @ / av + § av

Let the amount of the pore volume filled with fluid o(F and
with gas ;. Thus we get the following expression:

AiV=/1-3/adV+ (pd d&V + ;P av

Naturally:
olp + g = 1
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Let V = V/t/ denote an arbitrary material volume of rock with
fluid and gag in its pores, The mass of the matter in this msa-
terial volume does not change as V moves. This is the princip-
le of conservation of massg, which can be express by the equa-
tion:

d

at
v/t/

The substantial time derivative of the total smount of mass
will be separated to local and convective terms

fga;"{ /1-%/Q5+ xpdgp+ Xgdgglav +

v

* f[/l -®/Q g¥s + xpBQp Ty + “GéQG?Gl iX = o,
/A/

in which the first integral is taken through the control volu-
me V and the second integral is taken over the closed surface
/A/, bounding V. The first integral represents a time rate of
accumulation of mass within the control volume, the second is
the algebraic excess of the outflux of mass through the cont-
rol surface over the influx of mass, The principle of conser-
vation of mass ia valid for both the rock, the fluid and the
gas separately:

G -
f—at—[/l-é/gsvldv-!— f/1-§/gSdeA=0
v /A/
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[2) -
f-;—/O(‘F.ﬁqF/dV+ fo(Fci)quFdA=O
v /A/
f—-a——/o(é / av + V., dA = O
p c® 9 f KPP Qg Vg oA =
v /8/
‘Mis sezlsr integrsz! ecuztions czn be replsced by their diffe-
rential forme, since V i3 orbitrspy
——a—-[/l -®/9.]+ r‘ﬁv[/l P /R Vs =0
sS4 - ' S °'s -~
9t
C. . -
/O(mé?F/ + div /X F@g P ‘VF/ =0
o1 g
2. /XD / - Aiv /XD v./] =0
51 c® S ¢®PS¢ V¢! =

The equnaticns sre valid ignoring the interphzce mass trensport.
Otherwise snurce terms musf be cccured on the right side of
the equations, If ® = 0 we get the continuity equstion for
homogenesus reck, If & = 1 snd X p =1 the second equs-
tion turns to the continuity equztion fecr pure filuids, Final-
1y tne @ =1, O(G = 1 care reiers tc ‘;ure g28e6,

Ve congider now the dvnamics of the motion., The Funidzmental

~

principlie of the dynamics the 1luw of ccnservation o>f momentum,
Az it ia vnovm this stetement means thnt the r=te of change of
momentum of 2 material veclume V enunls the resultnnt force on

the volume,
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The momentum of the infinitesim=) volume of 1he caomplex conti-
nuum ia

[/]. -$ /?(:\73 + o(Fé QF_‘TI-‘ + Q(GégG-\?G] av o,

Its rate ¢ change expanding to the whele volume V is

4
" _[[/1 -/ Tyt B o Vp - XD gy VG] dv =
v

B f[/l ~2/Q 3Ty v xy@ S pEy v B g By AV ¢
‘f

=

l f[/l"i’/gs‘“‘xﬁ‘i’ Bp - g2 I | dn
/A/

" Here ‘E 15 the extrznecus force per unit mass., YWe tacitly
assume that the force § iz e ¥nown function of pezition and
time, 'ie slso adopt the stress principle of Czuchy, which sta-
tes that upon any surface exist 2 distribution of the surface
forces depending at =ny given time on the pecition 2nd the ori-
entation of the surface, This relation between the stress vec-
tor ¥ and the direction of the surf=ce element can be expres-
sed by the stress tensor F =s

-

daA .

f =

=

Applying Gauss’ divergence theorem, since the volume V is a2pr=-
bitrary it follows that
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d?‘s av. dV'G
/1 -% /¢ + Xpd gy + X B Qg =
dtg dtpq dt,

= /1 -®/Qg By + 3R gy Ep + X PQ &g +

+ Div [/l-é/ £S+O(Fé £F+O(G§ g‘].

This eguation of motion is valid for eny complex continuum,
regardless of the form of the stress tensor and other perticu-
lar properties of the material may take. This equation can’t

be reduced to three independent vector equstion referring to
the so0lid, liquid snd the gss component. This is impossible

in consequence of the interphszse momentum transport. I we se-
parate the terms referring to the rock, water and gas compo-
nent, all ctherc csn be regerded as the interacting forces bet-
ween the different phases. Thus we get

d‘G‘S

/1 - &/¢, =/1-é/?SES+Divl/1-é/§S]+¥S

Vo
W]

Thi= is the equ2tion of motinon for the solid component of the
e
compriex continuum, where kg iz the interscting force between

N

the +~1id ¢n? *he other two components, Similsrly we cen obtzin
thet

dv.
P - . -
Xy PR Fromiaiat pP By + Div Jotp®Fp/ + K
I‘l
znad
dVG &’ - . "
;PS¢ = (PR, 3; * Div /X PFy/ + kg o
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Now we have nine further scslsr equztions, but there =2re three
unknown extraneous forces in them, To obtain 2ny solution we
must postulate 2any zimplified relationship for the unknown
force E. Furthermore it is aporoximately true that certsin
“terms of the equations sre negligible depending on the sccom-
panying circumstances. For example the density of the gas phase
is negligible compared with the fluid or the rock. In other
hand the effect of tangential stresses is small in many prac-
tical cases for fluids, expecislly for gases, however and
therefore it is not unreasonable to consider the idezlized =i-

tuation in which the tangential stresses are neglected. Thus we
get

and

=
fl
!

{1

where I is the unit tensor, p is the preasure.

It is fregquently convenient to neglect the rste of momentum of
the so0lid phase. These simplifving assumptions allow to obtein
approximate sclutions in certsin cases.

The principle of conservation of angular momentum is gusran-
teed, if the stress tensor is symmetric, i.e.

prd o @i,
If the stress tensor is symmetric, the following equstion is
not independent of the ecuation of motion:
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d a .
Fx/l-@/qs?sdv-a- f?xo{F§QFdeV+
dtS ‘ th
\'s 1)
a — — —
+ " f'x"xo(G§‘§GdeV=frx[/l-@/?sgSJf
G
v v
+o(F§?F'§'F+O(GéQG°§'G]dV+ ?x[/1-§/25+
/A

+ X pd P+ “G{D‘Ecl ak

Let the kinetic energy of an arbitrary volume V of the complex
continuum

2 2

2
VS VF VG
1 - o, P av,
JIn-2/95 —S—+ oy —— +o¢;3 8, ——]

vV
and let the deformation tensor

S = —]-- /VeT + Va¥/ .
2
Then the rate of change of kinetic energy is equal to the rate
at which work is being done on the volume by external forces,
diminished by a disgipation term involving the intersction of
stress and deformation which is transformed into hest:
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2 a oy
F
d/eg av + — fo(FEb?F . av +
F
v v
d v
= fdca-?‘?c dV+f[/1-§?/ Sg ¢ Bg + xXpd Sp ¢ Fp
G
v v

v %@y By Vo av + f[/ 1- @/ Vg By + oxpd Vp By +
/A/

+ & ;;,gv ..G

This scalar equation can also be written in differentizl form:
/n-%/9, — /+oz P S /——/ ro,$ g — L
S F G
dts tF dt 2

+

/1 -%/ 55t Pg v Xpd Spt Fp+ ol B8, By =

/1 -2/Q 4 Ey Vg + o RRyp By Vp + KR <, 8g Vg *

+

Div[/l-d?/g +0(F<§>§F‘VF+0(G§ gG‘~7G
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Finally the principle of conservation of toi=2l energy of a vo-
lume V of the complex continuum can be written, We define the
total energy of a2 volume V as the sum of itz kinetic energy and
its internzl energy E., The thermodin2mical interpretation of
the internal energy is different for compressible znd incomp-
regssible media, For a compressible material for example gzses
we assume that internal energy is 2 thermcdynamic state vari-
able, which satisfies the following equation

TdS:dE+pd/—1—/
S
where T is the absolute temperature, 5 is the entropv per unit
volume, p is the pressure. For incompressible mazterials the
pressure is not a thermodynsmical variable, beczuse the densi-
ty is constant we obtain a simpler ecuation:

TdS = dE

The principle of conservation of the totzl energy stztes that
the rete of incresae of the total energy of a materisl volumre
V is equal the rate 2t which work is being done on the volume
plus the rate at which heat is condueted intc *the velvme,

-
d v 2

- d v .
S F .

— | /1-</ [==— + Fg/ dV + — fo( . b /— + B/ 4V =
dtg ¥/ S5 2 3 dtp, PSF o |

v v

d VG2 - -

dtG 2
v v

— - - e i \ N
+ o Sy By Vp % PR Bg Vg |4V ﬁ"l"&/ Vs Is

/&7
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— -
+O<G§ va EG]dA“L ]‘[XS E,Sgra.d TS*’XF' E.Fgrad TF+

/A/
-
+ ’)LG S'G grad TG-] dA

Applying the divergence therrem to the suvrface integrals we
can get the differentizl ferm cf the totsl energy ecuation,
referring to the unit vclume of the complex continuum:

Vs F

/l—§/§s——/—+E3/+o(F§§>F— — + Ep/ +

dts 2 th 2

d sz -~ - o
+ <>(G§‘§'G ;" _'é"‘ + EG/ = /1-§/<§S gg Vg + dFé’gF Bp Vp +

G
- . N

+ ol (23] &g Vg dl"\ /1-8/ By Vg v+ 5@ Fp Ty +

+ dcé Fa -‘?G + diV[/l-é/')\S grad Tg + o(Fé Ap grad Tp +

+

0<G§7\G grad TG]

The bszic equstions of the dynemics of complex continua are
discusced.

The number of unknown variasbles is more in these equations
than the number of independent scslar equ=ations. Thus we need
further ecuations to =olve sny problem. In general one mey
ndjioin to these equztions » thermodinamical relation, the
e~uztion of state:
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p""f/?’T/-

This equation may be different for gases, liquids or solids.
The pressure and temperature dependence of density eapecially
complex for multicomponent materials, With few exceptions,
data are insufficient to make generalizations other than that

methods suitable for pure materials may be applied with app-
roximate results,

The oiher necessary equaticn is the so~called constitutive
equation, It means the relation between the stress tensor and
other kinematic variables, The stress tensor governs the dyna=-
mic response of the medium, by relating it to other kinematic
and thermodynamic variables we cen define the type of medium
with which we work,

The most primitive form of the constitutive equation refers
to inviscid liquids or gases

F=-p

(1]
.

Stokes derived a constitutive equation appliceble to fluids
which exert appreciable tangential streasses:

F =[-p r e div ¥ o+ /div '1?/2] I+/2p + 2).1'L div V/ 8 +
v 4y §°
which is simpler for incompressible fluids:

F=-pl+2u§+ 4vs

nea

[ 4

Here H is the viscosity, w ,'v::‘, }J',\P are further constants.
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The most general constitutive equation is presented by Asszonyi.
He derived the following equation based on Onsager’s law:

P =A-/VeV/

where A is the conduction tensor of momentum. Its matrix is
fourth-order, it has 34 = Bl scaler elements, Regarding the
gymmetric properties of the tensor il’ it has 21 independent
elements in it. This is valid for perfectly 2nigotropic media.

If the conductive terms are dominated in the trznsport of mo-
mentum, the constitutive equation is the following

E =j=_}_‘/Voﬁ/
where U is the displacement vector,

The constitutive equation Tor the complex continuum csn be the
linear combination the above two equations:

F=/1-3/Fg+ ;B Pp + XD F; =
= /1_.§/£s-/vo?{/ + o pd A VeV +
+ x P ASVeT,/

Thus the system of basic equations is ccmplete, It includes
many special cases.

r 22 _ o, &y = 1, K =0, we get the equations for
X7

gseeping flow through a rigid, porous media., The o« , = O,

F
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.= 1 case refers to the seepage of the gas. Allowing that
°¢

0, the equations of consolidation can be derived,
t

o

The basic eguation of hydraulic and pneumatic transport also
can be deduced from this basic equation system,

We have the intention to introduce a general fenomenological
treatment for the multicomponent systems based on continuum
mechanics, We hope a better understanding of this very impor-
tant topics for the practice of mining,
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