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 Chapter 4: Applications of Thermodynamics to the Earth 
4.1 INTRODUCTION 

n the previous 2 chapters, we developed the fundamental thermodynamic relationships and saw 
how they are applied to geochemical problems.  The tools now in our thermodynamic toolbox are 
sufficient to deal with many geochemical phenomena.  They are not sufficient, however, to deal 

with all geochemical phenomena.  In this chapter, will add a final few thermodynamic tools.  These al-
low us to deal with non-ideal behavior and exsolution phenomena in solids and silicate liquids.  With 
that, we can use thermodynamics to determine the pressure and temperature at which rock assem-
blages formed, certainly one of the most useful applications of thermodynamics to geology.  Along the 
way, we will see how thermodynamics is related to one of the most useful tools in petrology: phase 
diagrams.  We will then briefly consider how thermodynamics has been used to construct computer 
models of how magma compositions evolve during melting and crystallization. Finally, we return to 
the question of non-ideal behavior in electrolyte solutions and examine in more depth the problems of 
ion association and solvation and how this affects ion activities.  Deviations from ideal behavior tend to 
be greater in solutions of high ionic strength, which includes such geologically important solutions as 
hydrothermal and ore-forming fluids, saline lake waters, metamorphic fluids, and formation and oil 
field brines.  We briefly examine methods of computing activity coefficients at ionic strengths relevant 
to such fluids. 

4.2 ACTIVITIES IN NON-IDEAL SOLID SOLUTIONS 
4.2.1 Mathematical Models of Real Solutions: Margules Equations 
 Ideal solution models often fail to describe the behavior of real solutions; a good example is water 
and alcohol, as we saw in Chapter 3.  Ideal solutions fail spectacularly when exsolution occurs, such as 
between oil and vinegar, or between orthoclase and albite, a phenomenon we will discuss in more de-
tail shortly.  In non-ideal solutions, even when exsolution does not occur, more complex models are 
necessary. 
 Power, or Maclaurin, series are often a convenient means of expressing complex mathematical func-
tions, particularly if the true form of the function is not known, as is often the case.  This approach is the 
basis of Margules† equations, a common method of calculating excess state functions.  For example, we 
could express the excess volume as a power series: 

   Vex = A + BX2 + CX2
2 + DX2

3 +…  4.01 
where X2 is the mole fraction of component 2.  
 Following the work of Thompson (1967), Margules equations are used extensively in geochemistry 
and mineralogy as models for the behavior of non-ideal solid solutions.  It should be emphasized that 
this approach is completely empirical — true thermodynamic functions are not generally power series.  
The approach is successful, however, because nearly any function can be approximated as a power series.  
Thus Margules equations are attempts to approximate thermodynamic properties from empirical ob-
servations when the true mathematical representation is not known.  We will consider two variants of 
them: the symmetric and asymmetric solution models. 

4.2.1.1 The Symmetric Solution Model  
 In some solutions, a sufficient approximation of thermodynamic functions can often be obtained by 
using only a second order power series, i.e., in equ. 4.1, D = E = ... = 0.  Now in a binary solution, the ex-

                                                
† Named for Max Margules (1856-1920), an Austrian meteorologist, who first used this approach in 1895. 

I 
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cess of any thermodynamic function should be entirely a function of mole fraction X2 (or X1, however 
we wish to express it).  Put another way, where X2 = 0, we expect Vex = 0.  From this we can see that the 
first term in Equ. 4.01, A, must also be 0.  Thus equation 4.01 simplifies to:  
  Vex = BX2 + CX2

2  4.02 
 The simplest solution of this type would be one that is symmetric about the midpoint, X2 = 0.5; this 
is called a Symmetric Solution.  In essence, symmetry requires that: 
  BX2 + CX2

2 = BX1 + CX1
2  4.03 

Substituting  (1 – X2) for X1 and expanding the right hand side of 4.3, we have: 
  BX2 + CX2

2 = B − BX2 + C − 2CX2 + CX2
2  4.04 

Collecting terms and rearranging: 
  B(2X2 – 1) =  C(1 – 2X2)  4.05 
which reduces to B = – C.  Letting WV = B in equation 4.2, we have: 
  V ex = WVX2 −WVX2

2 = WVX2 (1− X2 ) = X1X2WV  4.06 
W is known as an interaction parameter because non-ideal behavior arises from interactions between 
molecules or atoms and depends on temperature, pressure, and the nature of the solution, but not on X.  
Expressions similar to 4.02–4.06 may be written for enthalpy, entropy, and free energy; for example: 
  Gex = X1X2WG 4.07 
The WG term may be expressed as: WG = WU + PWV – TWS 4.08 
Since the WH term can be written as: WH = WU + PWV 
then 4.8 may also be written: WG = WH – TWS 4.08a  
The temperature and pressure dependence of WG are then 

  ∂WG

∂T
⎛ 
⎝ 

⎞ 
⎠ P

= −Ws  4.09 ∂WG

∂P
⎛ 
⎝ 

⎞ 
⎠ T

= WV  4.10 

 Regular solutions‡ are a special case of symmetric solutions where: 
  Ws = 0  and therefore  WG = WH 
Regular solutions correspond to the case where ∆Sex = 0, i.e., where ∆Smixing = ∆Sideal, and therefore where 
WS = 0.  From equation 4.9, we see that WG is independent of temperature for regular solutions. Exam-
ples of such solutions include electrolytes with a single, uncoupled, anionic or cationic substitution, 
e.g., CaCl2—CaBr2, or solid solutions where there is a single substitution in just one site (e.g., Mg2SiO4—
Fe2SiO4). 
 Setting equation 4.7 equal to equation 3.57, we have for binary solutions:  
  Gex = X1X2WG = RT X1 ln λ1 + X2 ln λ2[ ] 4.11 
 For a symmetric solution we have the additional constraint that at X2 = X1, λ1= λ2.  From this rela-
tionship it follows that: 
  RT ln λi = Xj

2WG  4.12 
This leads to the relationships: 
 µ1 = µ1

o + RT ln X1 + X2
2WG  4.13 

 µ 2 = µ 2
o + RT ln X2 + X1

2WG  4.13a 

                                                
‡  The term regular solution is often used to refer to symmetric solutions.  In that case, what we termed a regular so-
lution is called a strictly regular solution. 
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The symmetric solution model 
should reduce to Raoult’s and 
Henry’s Laws in the pure sub-
stance and infinitely dilute solution 
respectively.  We see that as X1→ 1 
equations 4.13 and 4.13a reduce re-
spectively to: 
 µ1 = µ1

o + RT ln X1  4.14 

 µ 2 = µ 2
o + RT ln X2 +WG  4.15 

Equation 4.14 is Raoult’s Law; let-
ting: 
 µ* = µ° + WG  
or WG = RT ln h 
then 4.15 is Henry’s Law.  Thus the 
interaction parameter can be re-
lated to the parameters of Henry’s 
Law, and activity coefficient.  In 
the Margules representation, a so-
lution that is ideal throughout is 
simply the special case where A= B 
= C = D = ... = 0.  

4.2.1.2 The Asymmetric Solution 
Model 
 Many real solutions, for example 
mineral solutions with asymmetric 
solvi, are not symmetric.  This corre-
sponds to the case where D in equa-
tion 4.01 is nonzero; i.e., we must 
carry the expansion to the third or-
der. It can be shown that in this case 
the excess free energy in binary solu-
tions is given by: 

� 

Gex = (WG1
X2 +WG2

X1)X1X2 4.16 
(You can satisfy yourself that this 
may be written as a power-series to 
the third order of either X1 or X2.)  
The two coefficients are related to the 
Henry's Law constants: 
 WGi

= µi
* − µi

o = RT lnhi  4.17 
Activity coefficients are given by: 

� 

νRT lnλi = (2WGj
−WGi

)X j
2

+2(WGi
−WGj

)X j
3
 4.18 

where j=2 when i =1 and visa versa and ν is the stoichiometric coefficient.  As for the symmetric solu-
tion model, the interaction parameters of the asymmetric model can be expressed as the sum of the WU, 
WV, and WS interaction parameters to account for temperature and pressure dependencies. 

 
Figure 4.02.  ∆Greal of alkali feldspar solution computed for a se-
ries of temperatures and 200 MPa. 

 
Figure 4.01. Alkali feldspar solid solution computed at 600° C 
and 200 MPa (2 kb) using the data of Thompson and Wald-
baum (1969).  ∆Greal = ∆Gideal + ∆Gexcess.  
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 The alkali feldspars (NaAlSi3O8 –
KAlSi3O8) are an example of a solid 
solution exhibiting asymmetric exso-
lution.   Figure 4.01 shows the ∆Greal, 
∆Gideal, and ∆Gexcess for the alkali feld-
spar solid solution computed for 600° 
C and 200 MPa using the asymmetric 
solution model of Thompson and 
Waldbaum (1969).  ∆Gexcess is com-
puted from equation 4.16, ∆Gideal is 
computed from equation 3.30.  Fig-
ure 4.02 shows ∆Greal for a series of 
temperatures.  Perhaps a clearer pic-
ture of how ∆G will vary as a func-
tion of both composition and tem-
perature can be obtained by plotting 
all 3 variables simultaneously, as in 
Figure 4.03.  

4.3 EXSOLUTION PHENOMENA  
 Now consider a binary system, 
such as NaAlSi3O8— KAlSi3O8 in the 
example above, of components 1 and 2, 
each of which can form a pure phase, 
but also together form a solution phase, 
which we will call c.  The condition for 
spontaneous exsolution of components 1 and 2 to form two phases a and b is simply that Ga + Gb < Gc.  

 
Figure 4.03.  ∆G surface for the alkali-feldspar solid solution as a 
function of the mole fraction albite and temperature. 
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 As we saw in Chapter 3, the free energy of a real solution 
can be expressed as the sum of an ideal solution a non-ideal 
or excess free energy term: 
  Greal = Gideal + Gex 
The free energy of the ideal part is given by: 

  

� 

Gideal = Xiµi
o

i
∑ + RT Xi

i
∑ lnX1  (3.31) 

Further, the ideal part itself consists of two terms, the first 
term in 3.31 corresponding to the free energy of a mechanical 
mixture (Gmixture), the second part being the free energy of 
ideal mixing (∆Gideal mixing).  Figure 4.05a illustrates the variation 
of Gexcess, Gmixture, and Gideal in this hypothetical system.  Gmixture is 
simply the free energy of a mechanical mixture of pure com-
ponents 1 and 2 (e.g., orthoclase and albite).  Figure 4.05b il-
lustrates the variation of Greal in this system So long as Greal is 
less than Gmixture, a solution is stable relative to pure phases 1 
and 2.  You can see that Gideal is always less than Gmixture, so as 
long as the Gex term is not too great.  In the hypothetical case 
illustrated in Fig. 4.05, a solution is always stable relative to a 
mechanical mixture of the pure end member phases.  How-
ever, if we look carefully at Fig. 4.05b, we see there is yet an-
other possibility, namely that two phases a and b, each of 
which is a limited solid solution of components 1 and 2, are 
stable relative to a single solid solution.  Thus at equilibrium, 
two phases will exsolve from the single solution; this is just 
what occurs at lower temperatures in the alkali feldspar sys-
tem.  It would be useful if thermodynamics could predict 
when such exsolution will occur.  Let’s see if our thermody-
namics tools are up to the task. 
 Looking at Figure 4.02, we see that at 800˚ C, ∆Greal defines 
a continuously concave upward path, while at lower tem-
peratures, such as 600˚ C (Figure 4.01), inflections occur and 
there is a region where ∆Greal is concave downward.   All this 
suggests we can use calculus to predict exsolution.  For a bi-
nary solution of components 1 and 2, the Gmixture, and ∆Gideal mix-

ing terms are: 
   

� 

Gmixture = X1µ1
o + X2µ2

o 
 

� 

ΔGideal mixing = RT (X1 lnX1 + X2 ln X2 ) 
Equation 3.31 can thus be written as: 

  

� 

G = X1µ1
o + X2µ2

o +
RT (X1 ln X1 + X2 lnX2 )+Gex

 4.19 

 Differentiating with respect to X2 (and recalling that X1 = 1 
– X2), we obtain: 

 

� 

∂G
∂X2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = µ2

o −µ1
o + RT ln X2

X1
+ ∂Gex

∂X2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  4.20 

 
Figure 4.05.  (a) Schematic isothermal, iso-
baric G-X plot for a real solution showing 
∆G of mechanical mixing, ideal mixing and 
excess mixing.  (b) Sum of ideal and excess 
mixing free energies shown in (a).  Tan-
gents to the minima give the chemical po-
tentials in immiscible phases a and b.  (c).   
T-X plot for same system as in (b).  Solid 
line is the solvus, dashed line is the spinodal.  
Exsolution may not occur between the spi-
nodal and solvus because the free energy 
can locally increase during exsolution.  Af-
ter Nordstrom and Munoz (1986). 
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This is the equation for the slope of the curve of G vs. X2.  The second derivative is: 

  

� 

∂2G
∂X2

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

RT
X1X2

+ ∂2Gex

∂X2
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  4.21 

This tells us how the slope of the curve changes with composition.  For an ideal solution, Gexcess is 0, the 
second derivative is always positive, and the free energy curve is concave upward.  But for real so-
lutions Gexcess can be positive or negative. If for some combination of T and X (and P), the second deriva-
tive of Gexcess becomes negative and its absolute value is greater than the RT/X1X2 term, inflection points 
appear in the G-X curve.  Thus exsolution is thermodynamically favored if for some composition: 

  

� 

RT
X1X2

+ ∂2Gex

∂X2
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ≤ 0  

The inflection points occur where the second derivative is 0, however, as may be seen in Fig. 4.5b, the 
inflection points do not correspond with the thermodynamic limits of solubility, which in this diagram 
are between X 2

a and X2
b . 

 We can draw a straight line that is tangent to the free energy curve at X 2
a and X 2

b .  This line is the 
free energy of a mechanical mixture of the two limited solutions a and b.  Phase a is mostly component 
1, but contains X2

a of component 2.  Similarly, phase b is mostly component 2 but contains 1 – X 2
b of 

component 1.  The mechanical mixture of a and b has less free energy than a single solution phase eve-
rywhere between X 2

a and X 2
b .  It is therefore thermodynamically more stable, so exsolution can occur in 

this region. 
 In Figure 4.02, we can see inflection points developing at about 650° C in the alkali feldspar solution.  
The inflection points become more marked 
and occur at increasingly different values 
of XAb as temperature decreases.  The alkali 
feldspar system illustrates a common situa-
tion where there is complete solid solution 
at higher temperature, but decreasing mis-
cibility at lower temperature.  This occurs 
because free energy of ideal mixing be-
comes less negative with decreasing tem-
perature (Figure 3.06). 
  Figure 4.05c shows a schematic draw-
ing of a temperature–composition plot in 
which there is complete solution at higher 
temperature with a widening two-phase 
region at lower temperatures.  The bound-
ary between the two-phase and one-phase 
regions is shown as a solid line and is 
known as the solvus. 
 The analysis of exsolution above is rele-
vant to immiscible liquids (e.g., oil and 
vinegar, silicate and sulfide melts) as well 
as solids.  There is a difference, however.  
In solids, exsolution must occur through 
diffusion of atoms through crystal lattices, 
while in liquids both diffusion and advec-
tion serve to redistribute components in 
the exsolving phases.  As exsolution be-
gins, the exsolving phases begin with the 

 
Figure 4.06.  A small portion of a G-X plot illustrating the 
origin of the spinodal.  The process of exsolution of two 
phases from a single solid solution must overcome an 
energy barrier.  As exsolution from a solution of composi-
tion C begins, the two exsolving phases have composi-
tions that move away from C, e.g., A’ and B’.  But the free 
energy of a mechanical mixture of A’ and B´ has greater 
free energy, by ∆Gunmix than the original single solution 
phase.  Exsolution will therefore be inhibited in this re-
gion.  This problem does not occur if the original solution 
has composition C’. 
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composition of the single solution and must rid themselves of unwanted components.  In a solid, this 
only occurs through diffusion, which is very slow.  This leads to a kinetic barrier that often prevents ex-
solution even though 2 exsolved phases are more stable than 1 solution.  This is illustrated in Figure 4.6.  
For example, consider a solution of composition C.  It begins to exsolve protophases of A and B, which 
initially have compositions A´ and B´.  Even though a mechanical mixture of A and B will have lower 
free energy than solution phase C, A´ and B´, the initial products of exsolution, have higher free energy 
than C.  Furthermore, as exsolution proceeds and these phases move toward compositions A and B, this 
free energy excess becomes larger.  Thus exsolution causes a local increase in free energy and therefore 
cannot occur.  This problem is not encountered at composition C’ though, because a mixture of the ex-
solving protophases A” and B” has lower free energy than original solution at C´.  Thus the actual limit 
for exsolution is not tangent points such as B but at inflection points (where ∂2G/∂X2 = 0) such as S.  The 
locus of such points is plotted in Figure 4.05c as the dashed red line and is known as the spinodal. 

4.4 THERMODYNAMICS AND PHASE DIAGRAMS 
 A phase diagram is a representation of the regions of stability of one or more phases as a function of 
two or more thermodynamic variables such as temperature, pressure, or composition.  In other words, 
if we plot 2 thermodynamic variables such as temperature and pressure or temperature and compo-
sition, we can define an area on this plot where a phase of interest is thermodynamically stable.  Figure 
4.07 is an example of a T-P phase diagram for a 1-component system: SiO2.  The diagram shows the SiO2 
phase stable for a given combination of pressure and temperature.  Figure 4.08 is an example of a sim-
ple T-X diagram for the two-component system diopside-anorthite (CaMgSi2O6 or clinopyroxene and 
Ca-plagioclase, CaAl2Si2O8; two of the more common igneous rock forming minerals).  In multicompo-
nent systems we must always be concerned with at least 3 thermodynamic variables: P, T, and X.  Thus 
any T-X phase diagram will be valid for only one pressure, 0.1 MPa (1 bar ≈ 1 atm) in this case.  Of 
course, with a three dimensional drawing it is possible to represent both temperature and pressure as 
well as composition in a binary system. 
 It should not surprise you at this point to 
hear that the phase relationships in a chemi-
cal system are a function of the thermody-
namic properties of that system.  Thus phase 
diagrams, such as Figures 4.07 and 4.08, can 
be constructed from thermodynamic data.  
Conversely, thermodynamic information can 
be deduced from phase diagrams.  
 Let’s now see how we can construct phase 
diagrams, specifically T-X diagrams, from 
thermodynamic data.  Our most important 
tool in doing so will be the G – X diagrams 
that we have already encountered.  The guid-
ing rule in constructing phase diagrams from G–   
– X diagrams is that the stable phases are those 
that combine to give the lowest G–  .  Since a G–   – 
X diagram is valid for only one particular 
temperature, we will need a number of G–   – 
X diagrams at different temperatures to con-
struct a single T – X diagram (we could also 
construct P – X diagrams from a number of 
G–   – X diagrams at different pressures).  Be-
fore we begin, we will briefly consider the 
thermodynamics of melting in simple sys-

 
Figure 4.07.  P-T phase diagram for SiO2.  This system 
has 1 component but 7 phases.  L designates liquid, 
dashed lines indicate where phase boundaries are un-
certain.  The α—β quartz transition is thought to be par-
tially second order, that is, it involves only stretching 
and rotation of bonds rather than a complete reforma-
tion of bonds as occurs in first order phase transitions. 
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tems. 

4.4.1 The Thermodynamics of 
Melting 
 One of the more common uses of 
phase diagrams is the illustration of 
melting relationships in igneous pe-
trology.  Let’s consider how our ther-
modynamic tools can be applied to 
understanding melting relationships.  
We begin with melting in a simple one-
component system, for example 
quartz. At the melting point, this sys-
tem will consist of two phases: a solid 
and a melt.  At the melting point, the 
liquid and solid are in chemical equi-
librium.  Therefore, according to equa-
tion 3.17: µl = µs. 
 The Gibbs Free Energy of melting, 
∆Gm, must be 0 at the melting point 
(and only at the melting point).  Since 
  ∆Gm = ∆Hm - Tm∆Sm  4.22 
and ∆Gm = 0 at Tm, then: 
  ∆Hm = Tm∆Sm 
where ∆Hm is the heat (enthalpy) of 
melting or fusion*, Tm is the melting 
temperature, and ∆Sm is the entropy 
change of melting.  Thus the melting 
temperature of a pure substance is 
simply: 

  Tm =
ΔHm

ΔSm
 4.23 

This is a very simple, but very impor-
tant, relationship.  This equation tells 
us that temperature of melting of a 
substance is the ratio of the enthaply 
change to entropy change of melting.  
Also, if we can measure temperature 
and enthalpy change of the melting re-
action, we can calculate the entropy 
change. 
 The pressure dependence of the 
melting point is given by the Clapey-
ron Equation: 

                                                
* The heat of fusion is often designated by ∆Hf.  I have chosen to use the subscript m to avoid confusion with heat of 
formation, for which we have already been using the subscript f. 

 
Figure 4.08.  Phase diagram (T-X) for the two-component sys-
tem diopside-anorthite at 1 atm.  Four combinations of phases 
are possible as equilibrium assemblages: liquid (L), liquid 
plus diopside (L + Di), liquid plus anorthite (L + An), and 
diopside plus anorthite. 

 
Figure 4.09.  Computed phase diagram for the system Anor-
thite-Diopside (CaAl2Si2O8–CaMgSi2O6).  The eutectic occurs at 
XDi = 0.7 and 1334°C.  The dashed lines beyond the eutectic 
give the apparent melting points of the components in the mix-
ture. 
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  dT
dP

=
ΔVm
ΔSm

 4.24 

Precisely similar relationships hold for vaporization (boiling).  Indeed, the temperature and pressure 
boundaries between any two phases, such as quartz and tridymite, calcite and aragonite, etc., depend 
on thermodynamic properties in an exactly analogous manner.   
 In equation 3.66 we found that addition of a second component to a pure substance depresses the 
melting point.  Assuming ∆Sm and ∆Hm are independent of temperature, we can express this effect as: 

  
 

Ti,m
T

= 1−
R lnai,m



ΔSi,m
 4.25  

 Since enthalpies of fusion, rather than entropies, are the quantities measured, equation 4.25 may be 
more conveniently expressed as: 

  
 

Ti,m
T

= 1−
Ti,mR lnai,m



ΔHi,m

 4.26 

Example 4.2 shows how the approximate phase diagram for the diopside-anorthite system (Figure 4.09) 
may be constructed using this equation. 
 It must be emphasized that in deriving equation 3.66, and hence the equations 4.25 and 4.26, we 
made the assumption that the solid was a pure phase.  This assumption is a reasonably good one for 
ice, and for anorthite-diopside binary system, but it is not generally valid. Should the solid or solids in-
volved exhibit significant solid solution, this assumption breaks down and these equations are invalid.  
In that case, melting phase diagrams can still be constructed from thermodynamic equations, but we 
need to model solid solution as well as the liquid one.  Section 4.4.2.1 below illustrates an example (An-
orthite-Albite) where the two solutions can be modeled as ideal. 

4.4.2 Thermodynamics of Phase Diagrams for Binary Systems 
 In a one component system, a phase boundary, such as the melting point, is univariant since at that 
point two phases coexist and ƒ = c- p + 2 = 1 - 2 + 2 = 1.  Thus specifying either temperature or pressure 
fixes the other.  A three-phase point, e.g., the triple point of water, is invariant.  Hence simply from 
knowing that three phases of water coexist (i.e., knowing we are at the triple point), we know the tem-
perature and pressure. 
 In binary systems, the following phase assemblages are possible according to the Gibbs Phase Rule 
(ignoring for the moment gas phases): 

  Phases  Free compositional variables 

Univariant 2 solids + liquid, 2 liquids + solid, 3 solids or liquids 0 
Divariant 1 solid + 1 liquid, 2 solids, 2 liquids 0 
Trivariant 1 solid or 1 liquid  1 

When a G–  -X diagram is drawn, it is drawn for a specific temperature and pressure, i.e., G–  -X are iso-
baric and isothermal.  Thus we have already fixed two variables, and the compositions of all phases in 
univariant and divariant assemblages are fixed by virtue of our having fixed T and P.  Only in trivari-
ant systems are we free to choose the composition of a phase on a G–  -X diagram.  Figure 4.10 is sche-
matic diagram of a two component, one phase (trivariant) assemblage, in which there is complete solu-
tion between component 1 and component 2.  This phase might be either a liquid, or a solid such as 
plagioclase.  The composition of the phase may fall anywhere on the curve.  Of course, since this dia-
gram applies only to one temperature, we cannot say from this diagram alone that there will be com-
plete solution at all temperatures. 
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Example 4.2:  Calculating Melting Curves  
 Using the data given below and assuming (1) 
that the melt is an ideal s olution and (2) diopside 
and anorthite solids are pure phases, calculate a T-X 
phase diagram for melting of an anorthite-diopside 
mixture. 
 An s w e r :  Solving equation 4.26 for T, and replac-
ing activity with mole fraction (since we may 
assume ideality), we have: 

 

  

T =
ΔHi,m

ΔHi,m
Ti ,m − R ln Xi

 4.27 

We then ca lculate T for every value of XAn and X Di.  This produces two curves on a T-X plot, as 
shown in Figure 4.09.  The curves intersect at the eutectic, or lowest point at which melt may exist in 
the system. 
 C omparing our result with the actual phase relationships determined experimentally (Figure 
4.08), we see th at while the co mputed phase diagram is s imilar to the actual one, our co mputed 
eutectic occurs at XDi = 0.70 and 1335° C and the a ctual eutectic occurs at X Di ≈ 0.56 and 1274° C .  
The difference reflects the failure of the several assumptions we made.  First, and most importantly, 
silicate liquids are not ideal s olutions.  Second, the entropies and enthalpies of fu sion tend to 
decrease somewhat with decreasing temperature, violating the a ssumption we made in deriving 
equation 4.26.  Third, the diopside crystallizing from anorthite-diopside mixtures is not pure, but 
contains some Al and an excess of Mg. 

 Tm ∆Hm 
 ° C joules/mole 
Diopside 1391 138100 
Anorthite 1553 136400 

(Data from Stebbins et al., 1983) 

 

 Figure 4.11 illustrates four possible divariant systems.  The first case (Figure 4.11a) is that of a liquid 
solution of composition L' in equilibrium with a solid of fixed composition S2 (pure component 2).  Be-
cause the system is divariant, there can be only one possible liquid composition since we have implic-
itly specified P and T.  As usual, the equilibrium condition is described by µl

i  =   

� 

µ i

s  (equation 3.17).  For i 
= 2, this means the tangent to the free energy curve for the melt must intersect the X2 = 1 line at µ 2s as is 
shown.  In other words, the chemical potential of component 2 in the melt must be equal to the chemi-
cal potential of component 2 in the solid.  Again, this diagram is valid for only one temperature; at any 
other temperature, the free energy curve for the liquid would be different, but the composition of this 
new liquid in equilibrium with solid S2 would still be found by drawing a tangent from S2 to the free 
energy curve of the liquid.  At sufficiently high temperature, the tangent would always intersect below 
S2.  The temperature at which this first occurs is the melting 
temperature of S2 (because it is the point at which the free en-
ergy of a liquid of pure 2 is less than the solid).  The shaded 
region shows the compositions of systems that will have a 
combination of solid S2 and liquid L’ as their equilibrium 
phases as this temperature. 
 We can also think of the tangent line as defining the free 
energy of a mechanical mixture of S2 and L’.  In the range of 
compositions denoted by the shaded region, this mixture has 
a lower free energy than the liquid solution, hence at equilib-
rium we expect to find this mixture rather than the liquid so-
lution. 
 Figure 4.11b illustrates a system with a liquid plus a solid 
solution, each of which has its own G-X curve.  Again, the 
equilibrium condition is µ i

l = µ i
s so the compositions of the 

coexisting liquid and solid are given by a tangent to both 

 
Figure 4.10.  Molar free energy vs. com-
position (G–   – X2) for a one-phase as-
semblage that exhibits complete solu-
tion of either a liquid or solid. 
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curves.  Since the system is divariant 
and we have fixed P and T the com-
positions of the solutions are fixed.  
All system compositions in the 
shaded region can be accommodated 
by a mixture of liquid and solid.  
Compositions lying to the left of the 
region would have only a liquid; 
compositions to the right of the sha-
ded region would be accommodated 
by a solid solution. 
 Figure 4.11c illustrates the case of 
two immiscible solids (pure compo-
nents 1 and 2).  The molar free en-
ergy of the system is simply that of a 
mechanical mixture of S1 and S2: a 
straight line drawn between the free 
energy points of the two phases. 
 Figure 4.11d illustrates the case of 
a limited solution.  We have chosen 
to illustrate a solid solution, but the 
diagram would apply equally well to 
the case of two liquids of limited 
solubility. 
 Figure 4.12a shows the case of two 
solid solutions plus one liquid.  The 
chemical potential of each compo-
nent in each phase must be equal to 
the chemical potential of that com-
ponent in every other phase, so 
chemical potentials are given by tan-
gents to all three phases.  This is an 
univariant system, specifying either 
temperature, pressure, or the com-
position of a phase fixes other vari-
ables in the system.  Because of this, 
if we move to a slightly higher or low 
temperature at fixed pressure one of 

the phases must be eliminated in a phase elimination reaction.  If the liquid is the liquid is between the 
two solids in composition, the reaction is known as a eutectic, which is the lowest temperature at which 
the liquid can exist.  Moving to a higher temperature would result in elimination of one of the solids.  
If, alternatively, the liquid is not between two solids (for example, if the curves L and S2 in Fig. 4.12 
were switched), the reaction would be known as a peritectic, and moving to lower temperature elimi-
nates one of the solids.  Thus, it is possible for a liquid to persist below a peritectic if the composition is 
right, but a liquid will never persist at equilibrium below a euctectic.  Figure 4.12b is a eutectic in a sys-
tem where the two solids are the phases of pure components 1 and 2.  A line drawn between the free 
energies of the pure components is also tangent to the liquid curve. 

 
Figure 4.11.  Plot of molar free energy vs. composition (G–   – 
X2) for two phase divariant systems.  (a) shows a liquid so-
lution (L) in equilibrium with a solid (S2) of pure X2.  The 
shaded area shows the range of composition of systems for 
which L’ and S2.  (b) is the case of where both solid and liq-
uid have variable composition.  Equilibrium compositions 
are determined by finding a tangent to both free energy 
curves.  L’ and S’ will be the equilibrium phases for systems 
having compositions in the shaded area.  (c) is the case of 2 
immiscible solids. (d) shows two limited solid solutions of 
composition S1 and S2.  In the case, the compositions of the 
solids are given by the point where a straight line is tangent 
to the curve in two places.   
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4.4.2.1 An Example of a Simple Binary Sys-
tem with Complete Solution: Albite–
Anorthite 
 Phase diagrams in T-X space can be con-
structed by analyzing G-X diagrams at a series 
of temperatures.  Let's examine how this can be 
done in the case of a relatively simple system of 
two components albite (NaAlSi3O8) and anor-
thite (CaAl2Si2O8) whose solid (plagioclase) and 
liquid exhibit complete solid solution.  Figure 
4.13 shows G-X diagrams for various tem-
peratures as well as a T-X phase diagram for 

this system.  Since both the solid and liquid ex-
hibit complete solution, we need to consider G-X 
curves for both.   
 We start at the highest point at which liquid 
and solid coexist, Tm (T1) for anorthite.  Here the 
solid and liquid curves both have the same value 
at XAn = 1; i.e., they are at equilibrium.  A G-X 
plot above this temperature would show the 
curve for the liquid to be everywhere below that 
of the solid, indicating the liquid to be the stable 
phase for all compositions. 
 At a somewhat lower temperature (T2), we see 
that the curves for the solid and liquid intersect 
at some intermediate composition.  To the right, 
the curve for the solid is lower than that of the 
liquid, and tangents to the solid curve extrapo-
lated to both XAb=1 and XAn=1 are always below 
the curve for the liquid, indicating the solid is the 
stable phase.  As we move toward Ab (left) in 
composition, tangents to the solid curve eventu-
ally touch the curve for the liquid.  The point 
where the tangent touches each curve gives com-
position of the liquid and the solid stable at this 
temperature.  In the compositional range be-
tween the points where the tangent touches the 
two curves, the tangent is below both curves, 
thus a mechanical mixture of solid and liquid is 
stable over this compositional range at this tem-
perature.  For compositions to the left of the point 
where the tangent touches the liquid curve, the 
liquid curve is lower than both the solid curve 
and a tangent to both, so it is stable relative to 

 
Figure 4.13.  G-X diagrams and a T-X phase diagram 
for the plagioclase-liquid system. After Richardson 
and McSween (1987). 

 
Figure 4.12.  Two univariant systems: a liquid plus 
two solid solutions, and two pure solids and a liq-
uid.  Since these systems are univariant, they oc-
cur only at one fixed T if P is fixed. 
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both the solid and any mixture of solid and liquid. 
 Going to progressively lower temperatures (e.g., T3), the points where a tangent intersects the two 
curves move toward Ab (to the left).  Eventually, at a sufficiently low temperature (T4), the curve for the 
solid is everywhere below that of the liquid and only solid solution is stable.  By extracting information 
from G-X curves at a number of temperatures, it is possible to reconstruct the phase diagram shown at 
the bottom of Figure 4.13. 
 Since both the solid and liquid show complete miscibility in this system, we will make the simplify-
ing assumption that both solutions are ideal and do an approximate mathematical treatment.  We recall 
that the condition for equilibrium was:  

 µ i
α = µ i

β  
We can express the chemical potential of each component in each phase as: 
  µi

α = µi
oα + RT ln Xi

α  4.28 
Combining these relationships, we have: 

  
 
µAb

o − µAb
os = RT ln XAb

s

XAb


⎛
⎝⎜

⎞
⎠⎟

 4.29  and 
 
µAn

o − µAn
os = RT ln XAn

s

XAn


⎛
⎝⎜

⎞
⎠⎟

 4.30 

Here our standard states are the pure end members of the melt and solid.  The left side of both of these 
equations corresponds to the standard free energy change of crystallization, thus: 

  
 
ΔGm

Ab = RT ln XAb
s

XAb


⎛
⎝⎜

⎞
⎠⎟

 4.31 and  
 
ΔGm

An = RT ln XAn
s

XAn


⎛
⎝⎜

⎞
⎠⎟

 4.32 

Both sides of these equations reduce to 0 if and only if     

� 

Xi

 = X i

s= 1 and T = Tm.  Rearranging: 
   XAb

s = XAb
 e−ΔGm

Ab RT  4.33 
   XAn

s = XAn
 e−ΔGm

An RT  4.34 
Thus the fraction of each component in the melt can be predicted from the composition of the solid and 
thermodynamic properties of the end members.  Since     

� 

XAn

 = 1 –     

� 

XAb

  and   

� 

XAn

s = 1 –   

� 

XAb

s , we can combine 
equations 4.33 and 4.34 to obtain: 

   1− XAb
( )e−ΔGm

An RT = 1− XAb
 e−ΔGm

Ab RT  4.35 

and rearranging yields: 
 
XAb
 =

1− e−ΔGm
An RT

e−ΔGm
Ab RT − e−ΔGm

An RT
 4.36 

The point is that the mole fraction of any component of any phase in this system can be predicted from the ther-
modynamic properties of the end-members.  We must bear in mind that we have treated this as an ideal sys-
tem; i.e., we have ignored any Gexcess term.  Nevertheless, the ideal treatment is relatively successful for 
the plagioclase system.  For non-ideal systems, we merely replace mole fraction in the above equations 
with activity.  Provided they are known, interaction parameters can be used to calculate activity coeffi-
cients (e.g., equations 4.18 or 4.12 as the case may be).   Beyond that, non-ideal systems can be treated in 
a manner exactly analogous to the treatment above. 

4.5 GEOTHERMOMETRY AND GEOBAROMETRY 
 An important task in geochemistry is estimating the temperature and pressure at which mineral as-
semblages equilibrate.  The importance extends beyond petrology to tectonics and all of geology be-
cause it reveals the conditions under which geological processes occur.  Here we take a brief look at the 
thermodynamics underlying geothermometry and geobarometry. 
 Geothermometry and geobarometry involve two nearly contradictory assumptions.  The first is that 
the mineral assemblage of interest is an equilibrium one, the second is that the system did not re-
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equilibrate during the passage through lower P and T conditions that brought the rock to the surface 
where it could be collected.  As we will see in the next chapter, reaction rates depend exponentially on 
temperature, hence these assumptions are not quite as contradictory as they might seem. In this section, 
we will focus only on “chemical” thermobarometers. In Chapter 9, we will see that temperatures can 
also be deduced from the distribution of isotopes between phases. 

4.5.1 Theoretical considerations 
 In general, geobarometers and geothermometers make use of the pressure and temperature depend-
ence of the equilibrium constant, K.  In Section 3.9 we found that ∆G° = -RT ln K.  Assuming that ∆Cp 
and ∆V of the reaction are independent of temperature and pressure, we can write: 
  ΔGo = ΔHT ,Pref

o − TΔST ,Pref
o + ΔVT ,Pref

o (P − Pref ) = −RT lnK  4.37 
where the standard state of all components is taken as the pure phase at the temperature and pressure 
of interest, and the enthalpy, entropy and volume changes are for the temperature of interest and a ref-
erence pressure (generally 0.1 MPa).   
 Solving 4.37 for ln K and differentiating the resulting equation with respect to temperature and pres-
sure leads to the following relations: 

  ∂ lnK
∂T

⎛
⎝⎜

⎞
⎠⎟ P

=
ΔHT ,Pref

o + ΔVT ,Pref
o (P − Pref )

RT 2  4.38 

and ∂ lnK
∂P

⎛
⎝⎜

⎞
⎠⎟ T

=
ΔVT ,Pref

o

RT
 4.39 

These equations provide us with the criteria for reactions that will make good geothermometers and 
geobarometers.  For a good geothermometer, we want the equilibrium constant to depend heavily on T, 
but be approximately independent of P.  Looking at equation 4.38, we see this means the ∆H term 
should be as large as possible and the ∆V 
term as small as possible.  A fair amount 
of effort was devoted to development of 
a geothermometer based on the exchange 
of Fe and Mg between olivine and py-
roxenes in the late 1960’s.  The effort was 
abandoned when it was shown that the 
∆H for this reaction was very small.  As a 
rule, a reaction should have a ∆H˚ of at 
least 1 kJ to be a useful geothermometer.  
For a good geobarometer, we want the 
∆V term to be as large as possible.  Even 
though the rhodonite ([Mn,Fe,Ca]SiO3) 
and pyroxmangite ([Mn,Fe]SiO3) pairs 
commonly occur in metamorphic rocks, 
the reaction rhodonite → pyroxmangite 
does not make a useful geobarometer be-
cause the ∆V of reaction is only 0.2 
cc/mol.  In general, a reaction should 
have a ∆V of greater than 2 cc/mol if it is 
to be used for geobarometry. 
 The following discussion presents a 
few examples of useful chemical geo-
thermometers and geobarometers (since 

 
Figure 4.14.  Phase diagram for Al2SiO5 (kyanite-sillimanite-
andalusite) as determined by Holdaway (1971). 
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most reactions are both temperature 
and pressure dependent, it is perhaps 
more accurate to use the term “ther-
mobarometer”).  It is not an exhaustive 
treatment, nor should it be inferred 
that those examples discussed are in 
any way superior to other geother-
mometers and geobarometers.  Re-
views by Essene (1982, 1989),  Bohlen 
and Lindsley (1987), and Powell and 
Holland (2008) summarize a wide 
range of igneous and metamorphic 
thermobarometers. 

4.5.2 Practical Thermobarome-
ters  
4.5.2.1 Univariant Reactions and 
Displaced Equilibria 
 We can broadly distinguish 3 main 
types of thermobarometers.  The first is the univariant reaction, in which the phases have fixed composi-
tions.  They are by far the simplest, and often make good geobarometers as the ∆V of such reactions is 
often large.  Examples include the graphite-diamond transition, any of the SiO2 transitions (Figure 4.07), 
and the transformations of Al2SiO5, shown in Figure 4.14.  While such thermobarometers are simple, 
their utility for estimating temperature and pressure is limited.  This is because exact temperatures and 
pressures can be obtained only if two or more phases coexist, for example, kyanite and andalusite in 
Figure 4.14.  If kyanite and andalusite are both found in a rock, we can determine either temperature or 
pressure if we can independently determine the other.  Where 3 phases, kyanite, sillimanite, and an-
dalusite coexist the system is invariant and P and T are fixed.  If only one phase occurs, for example sil-
limanite, we can only set a range of values for temperature and pressure.  Unfortunately, the latter case, 
where only 1 phase is present, is the most likely situation.  It is extremely rare that kyanite, sillimanite, 
and andalusite occur together. 
 The term displaced equilibria refers to variations in the temperature and pressure of a reaction that re-
sults from appreciable solution in one or more phases.  Thermobarometers based on this phenomenon 
are more useful than univariant reactions because the assemblage can coexist over a wide range of P 
and T conditions.  In the example shown in Figure 4.15, the boundaries between garnet-bearing, spinel-
bearing, and plagioclase-bearing assemblages are curved, or “displaced” as a result of the solubility of 
Al in enstatite.  In addition to the experimental calibration, determination of P and T from displaced 
equilibria requires (1) careful determination of phase composition and (2) an accurate solution model.  
 Geobarometers based on the solubility of Al in pyroxenes have been the subject of extensive exper-
imental investigations for the past 25 years.  The general principal is illustrated in Figure 4.15, which 
shows the concentration of Al in orthopyroxene (opx) coexisting with olivine (forsterite) and an alumi-
nous phase, anorthite, spinel, or garnet.  The Al content of opx depends almost exclusively on pressure 
in the presence of anorthite, is essentially independent of pressure in the presence of spinel, and de-
pends on both temperature and pressure in the presence of garnet.  Orthopyroxene-garnet equilibrium 
has proved to be a particularly useful geobarometer. 
 Garnet is an extremely dense phase.  So we might guess that the ∆V of reactions that form it will be 
comparatively large, and therefore that it is potentially a good geobarometer.  The concentration of Al 
in opx in equilibrium with garnet may be used as a geobarometer if temperature can be independently 
determined.  Although there has been a good deal of subsequent work and refinement of this 

 
Figure 4.15.  Isopleths of Al in orthopyroxene (thin red 
lines; weight percent) coexisting with forsterite plus and 
aluminous phase in the CMAS (Ca-Mg-Al-Si) system. After 
Gasparik (1984). 
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geobarometer, the underlying thermodynamic principles are perhaps best illustrated by considering 
the original work of Wood and Banno (1973). 
 Wood and Banno (1973) considered the following reaction: 
  Mg2Si2O6 + MgAl2SiO6 ® Mg3Al2Si3O12 4.40 
   Opx Solid Solution ®   Pyrope Garnet  
In developing a geobarometer based on this reaction, they had to overcome a number of problems.  
First, the substitution of Al in orthopyroxene is a coupled substitution.  For each atom of Al substituting 
in the M1 octahedral site, there must be another Al atom substituting for SiO2 in the tetrahedral site.  
Second, there was a total lack of thermodynamic data on the MgAl2SiO6 phase component.  Data was 
lacking for a good reason: the phase does not exist and cannot be synthesized as a pure phase.  Another 
problem was the apparent non-ideal behavior of the system, which was indicated by orthopyroxenes in 
Fe- and Ca-bearing systems containing less alumina than in pure MgO systems at the same pressure. 
 The equilibrium constant for reaction 4.40 is: 

  K =
aMg3Al2Si3O12

aMg2Si2O6aMgAl2SiO6
 4.41 

where the activities in the denominator represent the activities of the enstatite and the hypothetical 
aluminous enstatite phase components in the enstatite solid solution.  In the pure MgO system (i.e., no 
CaO, FeO, MnO, etc.), the numerator, the activity of pyrope, is 1, of course, and we may write: 
  ΔGo = RT ln(aMg2Si2O6aMgAl2SiO6 ) = ΔH o − TΔSo + (P − Pref )ΔV

o  4.42 
(compare equation 4.37).  For an ideal case, this may be rewritten as: 

  RT ln(XMg2Si2O6
XMgAl2SiO6

) = ΔH o − TΔSo + (P − Pref )ΔV
o  4.43 

Wood and Banno first estimated thermodynamic parameters (∆H, ∆S, and ∆V for aluminous pyroxene) 
from experimental data.  They dealt with the non-ideality in two ways.  First, they assumed ideal solu-
tion behavior at 1 bar and assumed all non-ideality associated with substitution of Al in orthopyroxene 
at higher pressure could be accounted for in the volume term in 4.42, which they rewrote as: 

ΔV o = VMg3Al2Si3O12
o −VMg2Si2O6

o opx −VMgAl2SiO6
o opx  4.44 

As for non-ideality related to substitution of Ca 
and Fe in the system, they noted that non-
idealities of most silicate systems were of similar 
size and magnitude and hence the activity coeffi-
cients for garnet tend to cancel those for orthopy-
roxene.  Furthermore, the ∆V and ∆H terms are 
both large and tend to reduce the errors due to 
non-ideal behavior.  
 Since equation 4.42 contains temperature as 
well as pressure terms, it is obvious that the tem-
perature must be known to calculate pressure of 
equilibration.  In the same paper, Wood and 
Banno (1973) provided the theoretical basis for 
estimating temperature from the orthopyroxene–
clinopyroxene miscibility gap.  Thus in a system 
containing garnet, orthopyroxene and clino-
pyroxene, both temperature and pressure of 
equilibration may be estimated from the compo-
sition of these phases. 

 
Figure 4.16.  Phase relationships in the system 
Mg2Si2O6 (enstatite) — CaMgSi2O6 (diopside) system 
(after Lindsley, 1983). 
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 This geobarometer-geothermometer is commonly used to estimate the temperature and pressure 
(depth) of equilibration of mantle-derived garnet lherzolite xenoliths.  One of the first applications was 
by Boyd (1973), who calculated P and T for a number of xenoliths in South African kimberlites, and 
hence reconstructed the geotherm in the mantle under South Africa. 

4.5.2.2 Solvus Equilibria 
  Solvus Equilibria provides a second kind of thermobarometer.  Generally, these make better geo-
thermometers than geobarometers.  A good example is the ortho- and clinopyroxene system, illustrated 
in Figure 4.16.  The two-pyroxene solvus has been the subject of particularly intensive experimental and 
theoretical work because ortho- and clinopyroxene coexist over a wide range of conditions in Mg, Fe-
rich rocks of the crust and upper mantle. 
 One of the inherent thermodynamic difficulties with this type of geothermometer is that since it in-
volves exsolution, ideal solution models will clearly be very poor approximations.  Thus considerable 
effort has been made to develop solution models for the pyroxenes.  Several factors further complicate 
efforts to use the pyroxene solvus as a thermobarometer.  The first is the existence of a third phase, pi-
geonite (a low-Ca clinopyroxene), at high temperatures and low pressures; the second is that the sys-
tem is not strictly binary: natural pyroxenes in igneous rocks are solutions of Mg, Ca, and Fe compo-
nents.  The presence of iron is problematic because of the experimental difficulties encountered with Fe-
containing systems.  These difficulties include the tendency both for iron to dissolve in the walls of 
commonly used platinum containers and for Fe2+ either to oxidize to Fe3+ or to reduce to metallic iron, 
depending on the oxygen fugacity.  In addition, other components, particularly Na and Al are often 
present in the pyroxenes, as we have just seen. 
 Despite its complexities, the system has been modeled with some success using a symmetric solution 
model developed by Wood (1987).  There are two octahedral sites in both ortho- and clinopyroxenes, 
generally called M1 and M2.  Ca2+ occurs only in the M2 site, while Fe and Mg can occupy either site.  
Ignoring pigeonite and components other than Ca, Mg and Fe, we can treat mixing in the M2 and M1 
sites separately.  Mixing in the M2 site can be treated as a ternary Mg, Fe, and Ca solution.  In a sym-
metric ternary solution consisting of components A, B, and C, the activities of the components may be 
calculated from: 

  RT lnγ A = XB
2WG

AB + XC
2WG

AC + XBXC WG
AB +WG

AC −WG
BC( )  4.45 

where WG
AB is the A-B binary interaction parameter, etc.  Mixing of Fe and Mg between the M1 and M2 

sites was treated as a simple exchange reaction: 

 
Figure 4.17.  Comparison of calculated (solid lines) and experimentally observed (red dashed lines) phase 
relationships between clino- and orthopyroxene shown in the ‘pyroxene quadrilateral’, a part of the 
CaSiO3–MgSiO3–FeSiO3 system.  Di:  diopside, En:  enstatite, Hd: hedenbergite, Fs: ferrosilite.  Lines show 
the limit of solid solution at the corresponding temperatures (° C). 
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  FeM2 + MgM1 ® FeM1 + MgM2 
with ∆H of 29.27 kJ/mol and ∆S of 12.61 j/mol. Using this approach, Wood calculated the temperature 
dependence of the solvus in shown in Figure 4.17.  The model fits experimental observation reasonably 
well for the Mg-rich pyroxenes, but significant deviations occur for the Fe-rich pyroxenes. 

4.5.2.3 Exchange Reactions  
 Exchange reaction thermobarometers depend on the exchange of two species between phases.  We 
will consider two examples of these.  
 The Roeder and Emslie olivine-liquid geothermometer is a rather simple one based on the equilib-
rium between magma and olivine crystallizing from it.  Consider the exchange reaction: 
   MgOOl +FeOliq ®MgOliq +FeOOl  
where Ol denotes olivine and liq denotes liquid.  We can write the equilibrium constant for this 
reaction as:  

  KD =
XFeO
Ol XMgO

liq

XFeO
liq XMgO

Ol  4.46 

Recalling our criteria for a good geothermometer, we can guess that this reaction will meet at least sev-
eral of these criteria.  First, olivine exhibits complete solid solution, so we might guess we can treat it as 
an ideal solution, which turns out to be a reasonably good assumption.  We might also guess that the 
molar volumes of forsterite and fayalite and of their melts will be similar, meaning the ∆V term, and 
hence pressure dependence, will be small, which is also true.  As it turns out, however, the ∆H term, 
which is related to the difference in heats of fusion of forsterite and fayalite, is also relatively small, so 
the exchange reaction itself is a poor geothermometer.  However, we can consider two separate reac-
tions here: 
  MgOliq → MgOOl      and      FeOliq → FeOOl 
and we can write two expressions for KD.  
This was the approach of Roeder and 
Emslie (1970), who deduced the follow-
ing relations from empirical (i.e., experi-
mental) results: 

  log
XMgO
Ol

XMgO
liq =

3740
T

−1.87  4.47 

  log XFeO
Ol

XFeO
liq =

3911
T

− 2.50  4.48 

 
These KD's are much more temperature 
dependent than for the combined ex-
change reaction.  Subtracting equation 
4.47 from 4.48 yields: 

  logKD =
171
T

− 0.63  4.49 

where KD is defined as in equation 4.46.  
Note that these equations have the form 
of equation 3.95.  Roeder and Emslie 

 
Fig. 4.18.  Olivine saturation surface constructed by Roeder 
and Emslie (1970). 
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(1970) used these equations to construct the diagram in Figure 4.18. 
 The iron-titanium oxide system evaluated by Buddington and Lindsley (1964) was one of the first 
means of obtaining quantitative estimates of crystallization temperatures of igneous rocks.  It is im-
portant not only because it is useful over a wide range of temperatures and rock types, but also because 
it yields oxygen fugacity as well.  Figure 4.19 shows the TiO2–FeO–Fe2O3 (rutile–wüstite–hematite) ter-
nary system.   The geothermometer is based on the reaction: 
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yFe2TiO4+(1-y)Fe3O4+
1

4
O2

® yFeTiO3+
3

2
-y⎛

⎝⎜
⎞
⎠⎟
Fe2O3

 4.50 

which describes equilibrium between the ulvospinel–
magnetite (titanomagnetite) and ilmenite–hematite 
solid solution series.  The equilibrium constant expres-
sion may be written as: 

  K =
aFeTiO3
y aFe2O3

3/2− y

aFe2TiO4
y aFe3O4

1− y fO2
1/4  4.51 

 The original Buddington and Lindsley geother-
mometer was based on empirica observations of com-
positional dependence on oxygen fugacity and tem-
perature, as shown in Figure 4.20.  Having values for 
the compositions of the titanomagnetite and ilmenite 
phases, one simply read T and ƒO2 from the graph.  To 
understand the system from a thermodynamic perspec-
tive, it is better to consider the two fundamental reac-
tions occurring separately in this system: 
 Fe3O4 + FeTiO3 ® Fe2TiO4 + Fe2O3  4.52 
 Magnetite + Ilmenite ® Ulvospinel + Hematite 
and: 4Fe3O4 + O2 ® 6Fe2O3 4.53 
 The first reaction represents a temperature dependent exchange between the titanomagnetite and ul-
vospinel solutions; the second reaction is the oxidation of magnetite to hematite. 
 Several investigators have studied the iron-titanium oxides attempting to improve upon the work of 
Buddington and Lindsley (1964).  The approach of Spencer and Lindsley (1981) was to consider two re-
actions 4.52 and 4.53.  They modeled the ilmenite as a binary asymmetric Margules solution and tita-
nomagnetite as a binary asymmetric Margules solution below 800° C and as an ideal binary solution 
above 800° C.  They modeled configurational entropy based ordering of Fe2+, Fe3+, and Ti4+ in the ilmen-
ite lattice structure (they assumed Fe3+ mixed randomly with Ti4+ in ‘A’ sites and Fe3+ and Fe2+ ran-
domly in ‘B’ sites).  The ∆G of reactions above were written as: 

  

� 

−
ΔG˚
RT

= ln
XUsp

α (1− XIlm )
α

(1− XUsp )
α XIlm

α

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ + ln

λUsp
α λHem

α

λMt
α λIlm

α

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
 

4.54 

and: −
ΔG
RT

= ln XHem
6α

XMt
4α

⎡

⎣
⎢

⎤

⎦
⎥ + ln

λHem
6α

λMt
6α

⎡

⎣
⎢

⎤

⎦
⎥ − ln fO2  4.55 

The α parameter is related to the number of sites involved in the exchange; Spencer and Lindsley as-
sumed α was 2 for ilmenite and 1 for titanomagnetite.  The excess free energy was expressed in the 
usual way for an asymmetric solution (equation 4.16): 

  Gex = WG1
X2 +WG2

X1( )X1X2  

for each solution series. When the effect of pressure is neglected, the free energy interaction parameter 
expression (equation 4.08) simplifies to: 

 
Figure 4.19.  The TiO2–FeO–Fe2O3 ternary sys-
tem.  Phases are: FeO: wüstite; Fe2O3: hema-
tite; TiO2: rutile; Fe2TiO4: ulvospinel; Fe2O4: 
magnetite; FeTiO3: ilmenite.  The system also 
includes the FeTi2O5—Fe2TiO5 solution, 
which is not shown. 
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  WG = WH – TWS  4.56 
 Values for WH and WS were obtained from least-squares fits to experimental data.  The parameters 
obtained are listed in Table 4.1. 
 Substituting equations 4.56 and 4.16 into the free energy of solution expression (∆Gexcess = ∆Gideal – 
∆Greal), the following equation can be obtained: 
 

  

� 

T(K) = AWH
Usp − BWH

Mt −CWH
Il + DWH

Hem + ΔHo

AWS
Usp − BWS

Mt −CWS
Il + DWS

Hem + ΔSo − R lnKexch  4.57 

Oxygen fugacity is determined as:  

  

log fO2 = logMH +

12 ln(1− Xilm )− 4 ln(1− XUsp )+

1
RT

8XUsp
2 (XUsp −1)WG

Usp + 4XUsp
2 (1− 2XUsp )WG

Mt +

12XIlm
2 (1− XIlm )WG

Ilm − 6XIlm
2 (1− 2XIlm )WG

Hem

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

2.303

 

4.58 

where: 

A = 3XUsp
2 − 4XUsp +1 , B = 3XUsp

2 − 2XUsp , C = 3XIlm
2 − 4XIlm +1 , D = 3XIlm

2 − 2XIlm  

 Kexch = (XUspXHem
2 )

(XMtXIlm
2 ) , ∆Ho = 27.799 kJ/mol, ∆So = 4.1920 J/K-mol 

and MH is the magnetite-hematite buffer:      log MH = 13.966 – 24634/T. 
 We have reviewed just a few of the available thermobarometers in use.  These were selected to il-
lustrate the underlying principles.  There are, however, many thermobarometers in use by geochemists 
and petrologists.  Some of these are listed in Table 4.2. 
 

Table 4.01. Margules Parameters for Ilmenite and Titanomagnetite Solid Solutions 
 Usp Mag Ilm Hem 
  (<800 ° C) (<800° C)  

WH (joules)  64835 20798 102374 36818 
WS (joules)  60.296 19.652 71.095 7.7714 
WG (>800°  C) (joules)  0 0 
∆S  

� 

Usp
o  (joules)  4.192 

∆H  

� 

Usp
o  (joules)  27799 
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Example  4.4:  Using  the  Iron-Titanium  Oxide  Geothermometer
An electron microprobe analysis of oxide phases in an andesite reveals that there is 68 mole per-

cent of ulvospinel in an ulvospinel–magnetite phase and 93.3% of ilmenite in an illmenite-hematite
phase.  Calculate the temperature and ƒO2 at which these phases equilibrated.
Answer:  We can use equations 4.57

and 4.58 to answer this question.   The
data in Table 4.2 are relevant to the
binary asymmetric solution model  for
the system below  800° C.  Above  800°
C, an ideal solution is assumed for the
ulvospinel-magnetite phase, so the in-
teraction parameters for this phase go
to 0.  But i f we don’t  know  the
temperature, how do we know  which
equation to use?  We begin  by
computing  temperature using  the
parameters for less than 800° C.  I f the
temperature computed  in this way is
greater than 800° C (1073 K), we set the
WH and WS for ulvospinel and
magnetite to 0 and recompute.

Once  we have temperature, we can
compute  the WG terms using  the rela-
tionship WG = WH–TWS, bearing in
mind that WGusp = WGMt = 0 i f the tem-
perature is greater than 800° C.  W i t h
these values in hand, we can use equa-
tion 4.58 to calculate the ƒO2. Our
spreadsheet is shown on the right.
These data we taken from one  of
Spencer and Lindsley’s (1981)
experiments, performed a t 938° C and
log ƒO2  = -12.76.  Our calculations are
in good  agreement with the
experimental observation.

XUsp XI lm
0.68 0.933

∆H 27799
∆S 4.192
R 8.314

Interaction Parameters
WHU 64835 WSU 60.296
WHM 20798 WSM 19.652
WHI 102374 WSI 71.095
WHH 36818 WSH 7.7714

A -0.3328
B 0.0272
C -0.12053
D 0.745467
K 0.010958

T= (A*WHU-B*WHM-C*WHI+D*WHH+∆H)
(A*WSU-B*WSM–C*WSI+D*WSH+∆S-R*ln(K))

T (<800) 1281 K 1008 °C
T (>800) 1 2 0 5 K 9 3 2 ° C

WG=WH-T*WS
WGU -7829.52 WGI 16695.29
WGM -2885.21 WGH 27452.45

MH -6.47
LogƒO2 (<800) -12.58

LogƒO2 (>800) - 1 2 . 6 9  
4.6 THERMODYNAMIC MODELS OF MAGMAS 

 Silicate liquids have played an extremely important role in the development of the Earth, as well as 
other bodies in the solar system.  As we shall see, the Earth’s crust formed as melts from the mantle 
rose to the surface and cooled.  Thus an understanding of igneous processes is an essential part of earth 
science.  Until the a few decades ago, the primary approaches to igneous petrology were observational 
and experimental.  Results of melting experiments in the laboratory were used to interpret observations 
on igneous rocks.  This approach proved highly successful and is responsible for most of our under-
standing igneous processes.  However, such an approach has inherent limitations: virtually every 
magma is unique in its composition and crystallization history.  Yet the experimental database is lim-
ited: it is not practical to subject each igneous rock to melting experiments in the laboratory.  Realizing 
this, igneous petrologists and geochemists turned to thermodynamic models of silicate melts as a tool 
to interpret their evolution.  With a proper ‘model’ of the interaction of various components in silicate 
melts and adequate thermodynamic data, it should be possible to predict the equilibrium state of any 
magma under any given set of conditions.  The obstacles in developing proper thermodynamic models 
of silicate liquids, however, have been formidable.  Because they are stable only at high temperatures, 
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obtaining basic thermody-
namic data on silicate liquids 
is difficult.  Furthermore, 
silicate liquids are very com-
plex solutions, with 8 or 
more elements present in 
high enough concentrations 
to affect the properties of the 
solution.  Nevertheless, suf-
ficient progress has been 
made on these problems that 
thermodynamics is now an 
important tool of igneous pe-
trology. 

4.6.1 Structure of Sili-
cate Melts 
 As was the case for sili-
cate solids and electrolyte so-
lutions, application of ther-
modynamics to silicate liq-
uids requires some under-
standing of the interactions 
that occur on the atomic 
level.  Thus we will once 
again have to consider the 
microscopic viewpoint be-
fore developing a useful 
thermodynamic approach.  
In this section, we briefly 

consider the nature of silicate melts on the atomic level. 

 
Figure 4.20.  Relationship of composition of coexisting titanomag-
netite and ilmenite to temperature and oxygen fugacity. 

Table 4.02.  Commonly Used Thermobarometers 
Reaction Type  Reference 
Garnet=Biotite Fe-Mg  exchange (Ferry and Spear, 1978) 
(Fe,Mg)3Al2Si3O12 ® K(Mg,Fe)AlSi3O10(OH)2  
Plagioclase = Garnet + Kyanite + Quartz displaced equilibria (Ghent, 1976; Koziol 
3(Ca,Na)Al2Si2O8 ® (Fe,Ca)3Al2Si3O12 + 2Al2SiO5 + SiO2  and Newton, 1988) 
Garnet + Quartz = Plagioclase  + Wollastonite displaced equilibria (Gasparik, 1984b) 
(Fe,Ca)3Al2Si3O12  + SiO2  ® (Ca,Na)Al2Si2O8 + 2CaSiO3   
Calcite = Dolomite solvus equilibria Goldsmith and Newton (1978) 
CaCO3 ® (Ca,Mg)CO3  
Calcite = Aragonite univariant (Johannes and Puhan, 1971) 
CaCO3 ® CaCO3 
Ilmenite + Al2SiO5 = Garnet + Rutile + Quartz displaced equilibria (Bohlen et al., 1983)  
3FeTiO3 + Al2SiO5 ® 3TiO2 + (Fe,Ca)3Al2Si3O12 + SiO2 
Hercynite + Quartz = Garnet + Sillimanite displaced equilibria (Bohlen et al., 1986) 
FeAl2O4 + 5SiO2 ® Fe3Al2Si3O12 + Al2SiO5 
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 Most, though not all, of our knowledge of the 
structure has come from studies of glasses rather than 
melts.  While the thermodynamic properties of sili-
cate liquids and their respective glasses differ, other 
studies have confirmed the general structural simi-
larities of glasses and liquids.  Spectral studies of 
glasses, which in some respects can be viewed as su-
percooled liquids, have revealed that silicate liquids 
have structures rather similar to those of silicate sol-
ids.  In fact, the principal difference between silicate 
liquids and solids is the absence of long-range order-
ing in the former; short range ordering is similar.  As 
in silicate minerals, the primary structural element of 
silicate liquids is the silicon tetrahedron (see Fig. 
1.11), consisting of a silicon atom surrounded by four 
oxygens.  As in silicate minerals, tetrahedra may be 
linked by a shared oxygen, called a bridging oxygen; 
not surprisingly, unshared oxygens are termed non-
bridging (Figure 4.21a).  Unlinked silica tetrahedra, 
that is, those with no bridging oxygens, are termed 
monomers, SiO 4

4 −  (Figure 4.21b). Two tetrahedra 
linked by a single oxygen are termed dimers and have 
the formula Si2O 7

6− .  Tetrahedra may also be linked 
by two oxygens to form infinite chains; these have a 
chemical formula of SiO 3

2 − .In silicates such as quartz 
and feldspar, the tetrahedra are all linked into a 
framework, and all oxygens are shared.  All these 
structural elements can be present in silicate glasses. 
 The degree to which the silica tetrahedra are 
linked, or polymerized, in silicate liquids affects 
chemical and physical properties.  The degree of po-
lymerization in turn depends on other cations pre-
sent.  These may be divided into two groups, network 
formers and network modifiers. Relatively small, highly 
charged cations such Al3+ and Fe3+ (more rarely, Ti4+, 
P3+, B3+ as well) often substitute for silicon in tetrahe-
dral sites and, along with Si, are termed network form-
ers.  The other common cations of natural silicate liq-
uids, Ca2+, Mg2+, K+, Na+, and H+, are network mod-
ifiers.  These ions cannot substitute for silicon in tet-
rahedra and their positive charges can only be bal-
anced by non-bridging oxygens.  Addition of these 
ions disrupts the linkages between silica tetrahedra.  
Thus as silicate melts become richer in these network 
modifiers they become progressively depolymerized.  
This is illustrated in Figure 4.22, which compares the structure of pure silica glass (liquid) and a silica-
rich glass (liquid).  Melt structure in turn affects the physiochemical properties of the melt.  For exam-
ple, SiO2–rich melts tend to have low densities and high viscosities.  As ions such as MgO or CaO are 
added to the melt, viscosity decreases and density increases as the polymer structure is disrupted. 

 
Figure 4.22.  (a) structure of pure silica glass and 
(b) a silica-rich glass with additional component 
ions. 

 
Figure 4.21.  Silicate structures.  a: Short range 
silicate structures in melts resemble those in sol-
ids.  Individual tetrahedra may be linked by 
bridging oxygens and linked to 2 silicon atoms.  
b.  Unit in silicate melts may include monomers, 
with no bridging oxygens, and dimers, where 
only 1 of 4 oxygens in each tetrahedra are ‘bridg-
ing’. 
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4.6.2 Magma Solution Models 
 Advances on several fronts have moved thermodynamic modeling of magmas from an academic cu-
riosity to a useful petrological tool.  First, spectroscopic (mainly Raman and infrared spectroscopy, both 
of which are sensitive to atomic and molecular vibrations) studies are revealing the structure of silicate 
melts, which provides the theoretical basis for thermodynamic models.  Second, more sophisticated 
thermodynamic models more accurately reflect interactions in silicate melts.  Third, the thermodynamic 
database has become more complete and more accurate.  Finally, the wide accessibility and power of 
computers and appropriate programs have made the extensive matrix calculations involved in these 
models possible.Several factors complicate the task of thermodynamic modeling of magmas.  First, 
magmas are solutions of many components (typically 8 or more).  Second, the solids crystallizing from 
magmas are themselves solutions.  Third, magmas crystallize over a substantial temperature range (as 
much as 400-500° C, more in exceptional cases).  Furthermore, crystallization may occur over a range of 
pressures as a magma ascends through the Earth, and crystallization may be accompanied by melting 
and assimilation of the surrounding ‘country’ rock.  Despite these complications several models that are 
sufficiently accurate to be useful to petrologists have been published, most notably those of Ghiorso 
(Ghiorso et al., 1983; Ghiorso and Sack, 1995) and Nielsen and Dungan (1983).  The goal of these models 
is to describe the phases and their proportions in equilibrium with a magma, and the resulting evolu-
tion of liquid composition.  In particular the models of Ghiorso and colleagues are applicable to both 
melting and crystallization.  In the section below, we briefly consider the model of Ghiorso. 

4.6.2.1 The Regular Solution Model of Ghiorso and Others: “MELTS” 
   Ghiorso (Ghiorso et al., 1983; Ghiorso, 1987; Ghiorso and Sack, 1995; Ghiroso et al. (2002) noted that 
silicate liquids have substantial compositional regions in which immiscibility occurs and therefore ar-
gued that the simplest model that might be able to describe them is the regular solution model. As we 
saw earlier in the chapter, regular solution models attempt to describe excess functions with interac-
tion, or Margules, parameters.  The Margules equation for excess Gibbs Free Energy for many compo-
nents is: 

  Gex =
1
2

XiX jWG
i, j

j , j≠ i
∑

i
∑  4.59*  

and the Gibbs Free Energy is: 

  G = Xiµi
o + RT Xi ln Xi

i
∑ +

1
2

XiX jWG
i, j

j
∑

i
∑∑  4.60†  

The chemical potentials of individual components are: 

  µi = µi
o = +RT ln Xi + XjWG

i, j

j , j≠ i
∑ −

1
2

XjXkWG
j ,k

k ,k≠ j
∑

j , j≠ k
∑  4.61 

and the activity coefficients are: 

  

� 

RT lnλi = X jWG
i, j

j
∑ −

1
2

X jXkWG
j ,k

k
∑

j
∑  4.62 

 Having chosen a general form for the solution model, the next step is to select the components.  For 
practical reasons, Ghiorso et al. (1983) placed all components on an 8-oxygen basis.  Ghiorso and Sack 
(1995) chose liquid components that were “mineral-like”: SiO2, TiO2, Al2O3, Fe2O3, MgCr2O4, Fe2SiO4, 
Mg2SiO4, CaSiO3, KAlSiO4, etc. and H2O.  For components of solid phases, they chose pure end-member 

                                                
* The 12  term arises because the sum contains both XiX jWG

ij  and X jXiWG

ij  terms and WG

ij = WG

ji . 
† For clarity, we have simplified Ghiorso's equation by neglecting H2O, which they treated separately. 
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phase components (e.g., MgSiO3 in orthopyroxene).  The problem with this approach is that the concen-
trations of these components varied greatly; for example, the mole fraction of SiO2 is typically 0.4 in ba-
saltic magmas where as that of Mg2SiO4 is typically less than 0.1 and that of KAlSiO4 is typically less 
than 0.05.  We can see from equation 4.60 that when Xi is small, the contribution of the interaction pa-
rameters for this component,  WG

i, j  to the free energy will also be small.  Consequently, in the most re-
cent version of this model, called pMELTS, Ghiroso et al. (2002) redefined the liquid components so that 
their mole fractions were more similar, e.g., SiO2 → Si4O8, Na2SiO3 → NaSi0.5O1.5, etc. 
 The next task is to find values for the interaction parameters.  These can be calculated from solid-liq-
uid equilibria experiments.  The principle involved is an extension of that which we used in construct-
ing phase diagrams: when a solid and liquid are in equilibrium, the chemical potential of each compo-
nent in each phase must be equal.  Since thermodynamic properties of the solids involved are available 
(determined using standard thermodynamics techniques), the thermodynamic properties of the co-
existing liquid may be calculated. 
 The reaction of a solid phase, ϕ, with the melt can be described with a set of p reactions of the form: 
  

 
ϕ p® ν p,ici

i
∑  4.63 

where ϕp is the pth end member component of phase ϕ, ci refers to the formula for the ith component in 
the liquid and νp,i refers to the stoichiometric coefficient of this component.  Thus for reaction of olivine 
with the liquid, we have two versions of 4.63: 
  (Mg2SiO4)Ol ® 2MgO + SiO2- 4.63a 
and (Fe2SiO4)Ol ® 2FeO + SiO2- 4.63b 
 We can express the Gibbs Free Energy change for each of these reaction as: 
  

 
ΔGr = ΔGϕ p

o + RT ν p,i lnai


i
∑ − RT lnaϕ p

 4.64 

where a  

� 

i
 is the activity of the oxide component in the liquid and ϕp refers to phase component p in 

phase ϕ.  ∆G–  r is, of course, 0 at equilibrium.  For example, for reaction 4.63a above, we have: 

  
 
ΔGr = 0 = ΔGFo

o + RT 2 lnaMgO
 + lnaSiO2

⎡⎣ ⎤⎦ + RT lnaFo  
where the subscript Fo refers to the forsterite (Mg2SiO4) component in olivine and the superscript 
 refers to the liquid phase.  Expanding the liquid activity term, we have: 
  

  
0 = ΔGϕ p

o + RT ν p,i ln Xi


i
∑ + RT ν p,i lnλi



i
∑ − RT lnaϕ p

 4.65 

Substituting 4.62 for the activity coefficient term in 4.65 and rearranging to place the “knowns” on the 
left-hand side, we have: 

 
 
−ΔGϕ p

o + RT lnaϕ p
− RT ν p,i ln Xi



i
∑ = ν p.i X jWG

i, j

j
∑

i
∑ −

1
2

XkX jWG
k , j

k ,k≠ j
∑

j
∑  4.66 

The quantities on the left-hand side of the equation are terms that can be calculated from the compo-
sitions of coexisting solids and liquids and solution models of the solids.  The right hand side contains 
the unknowns.  One statement of equation 4.66 can be written for each component in each solid phase 
at a given temperature and pressure.  With enough experiments, values for the interaction parameters 
can be extracted from the phase relations.  Ghiorso et al. (1983) and Ghiorso and Sack (1995) used a sta-
tistical technique called least squares† to determine the interaction parameters from a large number of 

                                                
† ‘Least squares’ is a numerical technique that attempts to minimize the square of the difference between calculated 
and observed value of some parameter.  The square is taken to give greater weight to large deviations.  Thus least 
squares techniques yield results where there are relatively few large deviations between the calculated and observed 
value of the parameter of interest.  We discuss this technique further in Chapter 8. 
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published experimental data.  Ghiorso and Sack (1995) also noted that the absence of a phase in an ex-
periment provides thermodynamic information about that phase, i.e., that its free energy must be 
higher than that of the phases that are present.  Their approach made use of this information as well, 
though discussion of that aspect of their method would take us too far afield.  In all, Ghiroso and Sack 
(1995) used data from 1593 published laboratory experiments. The interaction parameters they deter-
mined are listed in Table 4.3. In constructing the pMELTS model, Ghiroso et al. (2002) used mineral-
liquid equilibrium constraints derived from published results of 2439 different laboratory experiments. 
 One of the goals of the pMELTs was to improve the thermodynamic predictions at higher pressures.  
Since many melting reactions involve significant volume changes, this required an improved equation 
of state for the liquid, i.e., an improved description of the relationship between volume and pressure.  
Ghiroso et al. (2002) chose a third order Birch-Murnaghan equation: 

  P =
3
2
K V˚

V
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 4.67 

where K is the bulk modulus.  New experimental data on density derived from new shock wave ex-
periments and new experimental determinations of silicate liquid density (by suspending olivine 
crystals in the liquid and observing if they sink or float) were used to constraint the K’ parameter.  A 
new equation of state for water was also incorporated into pMELTS. 
 With values for the interaction parameters, the model can then be used to predict the assemblage of 
solids, their compositions, and the liquid composition that will be present in the system as a function of 
temperature and pressure.  The equilibrium condition for a magma, as for any other system, is the con-
dition where Gibbs Free Energy is at a minimum.  Thus the problem becomes finding compositions for 
the liquid and coexisting solids that minimizes G at a particular temperature and pressure.  In other 
words, we want to find values of G and Gφ1, Gφ2, ... Gφn such that Gsys is minimal where: 

   
 
Gsys = G + Gϕ

ϕ
∑  4.68 

Table 4.03. Interaction Parameters for the Ghiorso Regular Solution Model 
 SiO2 TiO2 Al2O3 Fe2O3 MgCr2O4 Fe2SiO4 Mg2SiO4 CaSiO3 Na2SiO3 KAlSiO4 Ca3(PO4)2 

TiO2 26267           
Al2O3 --39120 -29450          
Fe2O3 8110 -84757 -17089         
MgCr2O4 27886 -72303 -31770 21606        
Fe2SiO4 23661 5209 -30509 -179065 -82972       
Mg2SiO4 3421 -4178 -32880 -71519 46049 -37257      
CaSiO3 -864 -35373 -57918 12077 30705 -12971 -31732     
Na2SiO3 -99039 -15416 -130785 -149662 113646 -90534 -41877 -13247    
KAlSiO4 -33922 -48095 -25859 57556 75709 23649 22323 -17111 6523   
Ca3(PO4)2 613892 25939 52221 -4214 5342 87410 -23209 37070 15572   
H2O 30967 81879 -16098 31406  28874 35634 20375 --96938  10374 43451 
Values are in kJ/mol.  From Ghiorso and Sack (1995). 
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 Inherent in the problem is find-
ing which solids will be in equi-
librium with the liquid for a given 
bulk system composition at speci-
fied temperature and pressure.  In 
Ghiorso’s approach, an initial 
guess is made of the state of the 
system.  This is done by taking the 
liquid composition as equal to the 
system composition and estimat-
ing what phases are likely to be in 
equilibrium with this liquid.  
Then G is expanded as a 3-term 
Taylor Series‡ about that initial 
point, N´, where N´ is the com-
posite vector containing the mole 
fractions describing the com-
positions of all phases in the sys-
tem.  The second term in the ex-
pansion is the matrix of first de-
rivatives of G with respect to ni, 
the moles of component i, which 
is simply the matrix of the chemi-
cal potentials.  A minimum of G 
occurs where the first derivative is 

0.  Thus the second term is 
set to 0 and solution sought 
by successive iterations.  Af-
ter each iteration N´ is reset 
to the composition found in 
the most recent iteration.  
This approach clearly in-
volves repetitive matrix cal-
culations and would not be 
practical without a com-
puter, but they can easily be 
performed on the current 
generation of computers. 
 The goal of a thermody-
namic model such as MELTS 
is to predict the both the 
composition of the melt and 
composition of coexisting 
solid phases if temperature, 

pressure and the composition of the system can be specified.  Thus such a program should be able to 
                                                
‡  A Taylor series expansion of a function ƒ(z) in the vicinity of some point z = a has the form: 

 
  

� 

f (z) = f (a) +
(z − a)
1! f '(a) +

(z − a)2

2! f ' '(a) + … 

where ƒ’ and ƒ” are the first and second derivatives of ƒ with respect to z. 

 
Figure 4.24.  Compositions of pyroxenes found in lavas from two the 
Cameroon Line.  Diamonds, circles, and triangles are megacrysts and 
likely to have crystallized from these lavas.  Stars are pyroxenes in 
xenoliths accidentally incorporated in the lavas.  Lines show the com-
positions of the pyroxenes predicted by pMELTS to crystallize from 
these magmas as they cool and evolve.   After Rankenburg et al. (2004). 

 
Figure 4.23. SiO2 concentrations in a melt produced by melting of 
peridotite at 1 GPa as a function of F, the percent fraction of melt 
in the system.  Figure compares the predictions of the earlier ver-
sion of the MELTS model, the newer version, pMELTS, and ex-
perimentally determined composition. After Ghiroso et al. (2002). 
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predict the composition of the melt generated in a region undergoing melting and how the composition 
of that melt evolves as it rises and cools nearer the surface.  Figure 4.23 compares the predictions of the 
1995 and 2002 versions of the model with experimentally determined compositions of the liquid pro-
duced by melting peridotite at 1 GPa. The agreement between the model and experimental observation 
is clearly improved in  pMELTS, but it is also clear the predictions still do not agree perfectly with ob-
servations.   
 Figure 4.24 compares the compositions of clinopyroxene crystals found in basaltic lavas of Camer-
oon Line volcanoes with the compositions predicted by pMELTS to crystallize from these magmas.  
Diamonds and circles are megacrysts, and are likely to have crystallized from the magmas.  Stars are py-
roxenes in ultamafic xenoliths, which are more likely pieces of mantle accidentally incorporated in the 
magma.  The kink in the lower link reflects the onset of garnet crystallization.  The agreement is not 
perfect but this diagram nevertheless shows the enormous value of the this thermodynamic approach 
in igneous petrology.  In this example, Rankenburg et al. (2004) were able to estimate the pressue and 
temperature of crystallization as 1400˚C and 1.7-2.3 GPa.  These pressures correspond to depths greater 
than the thickness of the crust in this area, hence the authors concluded the pyroxene megacrysts must 
have crystallized in the mantle.  Future refinements of the MELTS will undoubtedly close the gap be-
tween predictions and observations and enhance the value of this tool. 
 The latest version of the model, pMELTS runs on UNIX-based computers (including Mac OS X), and 
is available on World Wide Web at “http://melts.ofm-research.org/index.html”).  This web site also 
has an online Java version available. 

4.7 REPRISE: THERMODYNAMICS OF ELECTROLYTE SOLUTIONS 
 We discussed the nature of electrolyte solutions and introduced one approach to dealing with their 
non-ideality, namely the Debye-Hückel activity coefficients, in Section 3.7.  We also noted a number of 
theoretical weaknesses in the Debye-Hückel approach and that this approach is restricted to fairly di-
lute solutions (ionic strengths less than 0.1 M).  In this section we will return to the problem of electro-
lyte solutions and examine the causes of non-ideal behavior in high ionic strength solutions in more de-
tail.  Before doing so, however, we need to introduce a new variation on our now-familiar thermody-
namic parameters, namely mean ionic quantities. 

4.7.1 Mean Ionic Quantities 
 Consider an aqueous NaCl solution.  In Chapter 3 we saw that the thermodynamic properties of a 
salt are related to those of its component ions by: 
  ΨAB ≡ νAΨA + νBΨB (3.73) 
So, for example, the chemical potential of NaCl in solution is: 
  µNaCl = µ

Na+
+ µ

Cl–   
which we can express as: 

  µNaCl = µ
Na+
o + µ

Cl−
o + RT lna

Na+
+ lna

Cl−( )  4.69 

or:  µNaCl = µ
Na+
o + µ

Cl−
o + RT lnm

Na+
+ lnm

Cl−( ) + RT lnγ
Na+

+ lnγ
Cl−( )  

Though we can certainly determine the concentrations of Na and Cl in solution, how do we independ-
ently determine their activity coefficients?  Since we cannot create a pure Na+ solution or a pure Cl– one, 
we cannot say what part of the non-ideality of NaCl solution is due to Na+ and what part is due to Cl–.  
The practical solution then is to assign all non-ideality equally to both ions.  This leads to the concept of 
the mean ion activity coefficient: 

  γ ± = (γ Na+
γ
Cl−
)1/2  4.70 
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Thus the mean activity coefficient of a salt is the geometric mean of the activity coefficients of its com-
ponent ions.  Equation 4.69 then becomes: 

  µNaCl = µ
Na+
o + µ

Cl−
o + RT lnm

Na+
+ lnm

Cl−
+ lnγ ±

2( )  
Equation 4.70 is valid for 1:1 salts (i.e., 1 cation for each anion).  A general expression for the mean ac-
tivity coefficient of a salt of composition Aν+Bν– is:  

  γ ± = (γ +
ν+

γ −
ν−

)1/ν  4.71 
where ν is the sum of the component positive and negative ions: 
  ν = ν+ + ν– 4.72 
Mean activity coefficients have the advantage that they are readily measurable (through electro-
chemical means or solubility, for example).  Given a well-behaved salt, such as KCl, where the rela-
tionship γ– =γ+ appears to hold, it is then possible to determine single ion activity coefficients.  For ex-
ample, we can obtain γNa+ in our NaCl solu-
tion by first determining γCl– in KCl*: 
  γCl– = γK– = γ±KCl  
then determining the mean ion activity co-
efficient of NaCl experimentally in a solu-
tion of the same ionic strength and calculating 
γNa+ as: 

  γ
Na+

=
γ ±NaCl
2

γ
Cl−

 

 We can extend the concept of mean 
ionic quantities to other thermodynamic 
variables as well.  The mean ionic potential, 
µ±, is defined as: 
   µ± =

ν +µ+ν
−µ−

ν
 4.73 

Thus the mean ionic potential is simply the 
arithmetic mean of the potential of the in-
dividual ions weighted by their stoichio-
metric coefficients.  We could also express 
the mean ionic potential as: 

  µ± = µ±
o +

RT lna+
ν+

+ lna−
ν−( )

ν
 4.74 

Rearranging once more, we obtain: 

  µ± = µ±
o + RT ln a+

ν+

a−
ν−( )1/ν  4.75 

Comparing this relationship with equation 4.69, we define a mean ionic activity such that: 

  a± = a+
ν+

a−
ν−( )1/ν  4.76 

                                                
* The use of KCl as a reference for determining mean ion activity coefficients is based on the observation that K+ and 
Cl– have about the same effective radius and ion mobility and is known as the MacInnes Convention.  Like that of 
Debye-Hückel, however, this approach breaks down at high ionic strength. 

Example 4.5: Calculating Single Ion Activity 
Coefficients from Mean Ionic Activity Coeffi-
cients 
The measured mean ionic activity coefficient of KCl in a 
solution of 1.0 m ionic strength is 0.604; that of CaCl2 in a 
solution of the same ionic strength is 0.449.  What is the 
activity coefficient of Ca2+?  Assume γCl– = γK+. 
 Answer: We begin by noting that γCl– = γK+ =  γ±KCl 
and therefore that γCl– = 0.604.  According to equ. 4.71, 
the mean ion activity coefficient for CaCl2 is related to 
the single ion activity coefficients as: 

  

� 

γ±CaCl2 = γ Ca +γ Cl−
2( )1/ 3  

  Solving this for γCa2+ we have: 

  

� 

γCa + =
γ

±CaCl2

3

γCl −
2 =

0.4493

0.6042
= 0.248  
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We can also define mean ionic molalities such 
that a± = γ±m±.  Substituting a- = γ-m-, and a+ = 
γ+m+, we find the mean ionic molality is then: 

  m± = m+
ν+

m−
ν−( )1/ν

 4.77 
Mass balance requires that:  
  m+ = ν+m    and  m– = ν–m 4.78  
Substituting this into equation 4.77, we see that: 

  m± = m ν+
ν+

ν−
ν−( )1/ν  4.79 

 Let’s return to our NaCl example.  Dissocia-
tion is essentially complete and ν+ and ν– are 
unity, so that: 
  mNa+ = mNaCl  
and mCl– = mNaCl 
Since ν = 2: m±NaCl = mNaCl

2 = mNaCl  
Mean ionic molality is simply equal to molality 
for a completely dissociated salt consisting of 
monovalent ions such as NaCl. 
  The mean ionic activity coefficient, or the 
stoichiometric activity coefficient as it’s sometimes 
referred to, of NaCl would be the square root of 
the product of the component activity coefficients according to 
equation 4.76, as would the mean ionic activity.   The individ-
ual ion activities can be measured in a number of ways.  There-
fore, the above relationships allow calculation of the mean ionic 
activity coefficient from measurable quantities. 
 For strong electrolytes, i.e., salts that completely dissociate, it 
can also be shown that mean activity coefficient and mean ac-
tivity of the salt are related to its activity coefficient and activity 
by: 

  γ = γ ±
ν

 4.80  
and a = a±

ν  4.81 
We can modify the Debye-Hückel equations to obtain mean ion 
activity coefficients as follows: 
Debye-Hückel Extended Law: 

  log10 γ ± =
−Az+ z− I
1+ Bå I

 4.82 

Limiting Law:  
  log10 γ ± = −Az+ z− I  4.83 
where å is taken as the sum of the radii of the anion and cation, 
i.e., å = å+ + å–. 

 
Figure 4.25.  (a) Relationship between 
activity and molality of NaCl in aque-
ous solution.  The activity is very low 
and the “Henry’s Law Slope” is almost 
0 at low concentrations.  (b) Relation-
ship between activity and the square of 
molality of NaCl in aqueous solution. 

Example 4.6: Mean Ionic Parameters for 
a fully dissociated electrolyte 
 If the molality of a CaCl2 solution is 0.3 M and 
the activity coefficients of Ca2+ and Cl– are 0.5 and 
0.7 respectively, calculate the activity and mean 
ionic molality of CaCl2 in the solution.  Assume 
that CaCl2 fully dissociates. 
 Answer:  For CaCl2, ν+ = 1, ν– = 2, and ν = 3.  So 
we can use equation 4.79 to calculate mean ionic 
molality: 
 m±CaCl2

= mCaCl2
(1122 )1/3 = 41/4mCaCl2

 
Substituting 0.3 for m, we find that m± = 0.4762 
M. 
 We then use equation 4.71 to calculate the 
mean ionic activity coefficient: 
 γ ± = (γ +

ν+

γ −
ν−

)1/ν = (0.510.72 )1/3 = 0.625   
The mean ionic activity is then: 
 a± = γ ±m± = 0.625 × 0.4762 = 0.298  
and the activity of CaCl2 is:  
 aCaCl2 = a±

ν = γ ±m± = 0.298
3 = 0.0263M  
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4.7.1.1 Relationship between Activity and Molality of a Salt 
 Let’s consider the relationship between activity and molality of a salt in an electrolyte solution such 
as a NaCl solution.  Figure 4.25a illustrates this relationship.  What we immediately notice is that the 
slope in the Henry’s Law region is essentially zero, which is not at all what we expect for Henry’s Law 
behavior.  
   It can easily be shown that the relationship in Fig. 4.25a is a simple consequence of the dissociation 
of the NaCl into Na+ and Cl- ions.    From 3.75 we have: 
  µNaCl = µ

Naaq
+ + µ

Claq
−  4.84 

Substituting this into equation 3.46, we obtain: 
  µNaCl = µ

Na+
o + µ

Cl−
o + RT lna

Na+
+ RT lna

Cl−  
In the reference state of infinitely dilute solution, mi = ai, so that: 
  µNaCl = µ

Na+
o + µ

Cl−
o + RT lnm

Na+
+ RT lnm

Cl−
 4.85 

Furthermore, charge balance requires that: 
  mNa+ = mCl- = mNaCl 4.86 
Substituting 4.86 into 4.85 and rearranging: 

  

� 

µNaCl = µNa +
o + µCl −

o + 2RT lnmNaCl = µNa +
o + µCl −

o + RT lnmNaCl
2  4.87 

Comparing this equation with equation 3.46, 
we see that 
  aNaCl ∝ mNaCl

2  
When we plot activity versus the square of 
molality, we obtain a linear relationship (Fig. 
4.25b). 
 Generalizing this result for dissociation of 
a substance into a positive ion A and nega-
tive ion B, such as:  

   Aν+ Bν− ¨ν +Aν+

+ ν +Bν−

 
the relationship between activity of a salt and 
its molality is: 

  aAB ∝ mAB
ν  4.88 

For example, ν is 3 for CaCl2, 4 for FeCl3, etc. 
 Now let’s see what happens if we substi-
tute the mean ion activity for activity.  Since:  
  a±

ν = aAB  
We  have: a±

ν = mAB
ν  or a± ∝ mAB  

This is the relationship that we observed in 
Figure 4.25, so we see that the mean ionic ac-
tivity accounts for the effects of dissociation. 

4.7.2 Activities in High Ionic Strength 
Solutions 
 The Debye-Hückel equation becomes in-
accurate at ionic strengths above about 0.1 m.   

 
Figure 4.26.  Observed mean ion activity coefficient, γ±, 
of NaCl as a function of ionic strength and tem-
perature (solid lines; data from Helgeson, 1981) com-
pared with value predicted by the Debye-Hückel Law 
(dashed red lines, computed as (γNa+γCl–)1/2). 
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This is illustrated in Figure 4.26, which shows the experimentally determined mean ion activity coef-
ficient for NaCl as a function of ionic strength and temperature.  At low temperatures, the activity be-
gins to increase about ionic strengths of 1 m, whereas Debye-Hückel predicts continual decrease.  The 
activities of many electrolytes eventually exceed 1 at high concentrations.  The difference between the 
observed activity coefficients and those predicted by the Debye-Hückel equation are due to the effects 
of ion association and solvation.  Debye and Hückel explicitly assumed complete dissociation, i.e., no 
ion associations, and while their treatment included in a general way the dielectric properties of water, 
it neglected the effects of solvation.  As we noted in Chapter 3, the effects of both ion association and 
solvation become increasingly important with increasing ionic strength.  It should be no surprise then 
that the Debye-Hückel treatment breaks down at high ionic strength.  Here we will consider these ef-
fects in greater detail. 

4.7.2.1 Correction for the Concentration of Water 
 At low and moderate ionic strength, we can assume that the mole fraction of water in solution is 1.  
For example in seawater, with an ionic strength of 0.7, the mole fraction of water about 0.99.  Generally, 
activity coefficients and equilibrium constants are not known within 1%, so the error introduced by this 
assumption is still small compared to other errors.  In higher ionic strengths, however, this assumption 
is increasingly invalid (for example, at a molality of 3, the mole fraction of water has decreased below 
0.95), and this must be taken into account.  A convenient way to do this is to incorporate it into the ac-
tivity coefficient.  The corrected activity coefficient is: 

  γ corr =
γ

1+ 0.018 mii∑( )  4.89 

4.7.2.2 Effects of Solvation 
 Water molecules bound to ions in solvation shells have lost their independent translational motion 
and move with the ion as a single entity.  These water molecules are effectively unavailable for reaction, 
hence solvation has the effect of reducing the activity of water, which increases the apparent concentra-
tion, or activity, of the solutes.  In addition to solvation, i.e., the direct association of some water mole-
cules with the ion, the charge of the ion causes collapse of the water structure beyond the solvation 
shell. 
 For a solution consisting of a single salt, Robinson and Stokes (1959) proposed the contribution of 
solvation to the mean ion activity coefficient could be expressed as: 

  logγ ±
solv = −

h
ν
logaw − log(1− 0.018hm)  4.90 

where γsolv
±   is the solvation contribution to the mean ion activity coefficient, h is the number of moles of 

water molecules bound to each mole of salt, aw is the activity of water, m is the concentration of the salt 
in solution, and ν is a defined in equation 4.72 (i.e., total 
moles of ions produced upon dissolution of a mole of 
salt).  Table 4.3 listed estimated values for the solvation 
number, i.e., number of water molecules in the solva-
tion shell of each ion.  From these, the value of h for 
equ. 4.90 can be calculated.  The activity of water can be 
adequately estimated as: 
  aw = 1 – 0.04m 
Figure 4.27 illustrates the effect of solvation on the ac-
tivity coefficient.  As may be seen, solvation sub-

Table 4.03. Ion Solvation Numbers 
Species h Species h 
Li+ 2.3 OH– 7.6 
Na+ 3.3 F– 6.7 
K+  2.3 Cl– 2.7 
Rb+ 2.3 Br_ 1.7 
Mg2+ 8.9 CO 3

2 −  14.4 
Ca2+  8.9 SO 4

2 −  10.4 
Cd2+ 6.3 
Ba2+ 9.2 



W. M. White  Geochemistry 

Chapter 4: Applications of Thermodynamics 

 147  

stantially affects the activity coefficient at ionic 
strengths above about 0.5 m. 

4.7.2.2 Effects of Ion Association 
 An ion pair can be considered to have formed 
when ions approach closer than some critical dis-
tance, rc, where the electrostatic energy, which 
tends to bind them, exceeds twice the thermal en-
ergy, which tends to move them apart.  When this 
happens, the ions are electrostatically bound and 
their motions are linked.  They are said to form an 
ion pair.  The thermal energy of an ion is kT and 
electrostatic interaction energy is: 

  Uelectro. =
q1q2
4πεr

 4.91 

The ratio of these two energies when the distance is 
less than the critical one is then: 

  Uelectro

Utherm

=
z1z2e

2

4πε0εrrT
 4.92 

We can use this equation to solve for the critical 
distance rc: 

  

� 

rc =
z1z2e

2

8πε0εrT
 4.93 

For two singly charged ions, the critical distance is 3.57 Å.  In a 1 molar solution, the average separation 
between ions is about 12 Å, so even in such a relatively concentrated solution, ion pairs will not form 
between singly charged ions.  Indeed, the critical distance is smaller than the combined Debye-Hückel 
radii of all pairs of singly charged ions.  Thus we do not expect ion associations to form from pairs of 
singly charged ions under most circumstances.  In contrast, the critical distance for ion association be-
tween a singly and a doubly charged ion is 70 Å, considerably greater than the sum of their Debye-
Hückel radii.  It also exceeds the average separation of ions in a 0.01 m solution (about 55 Å), so that 
even in dilution solutions, we would expect significant ion pair formation for multiply charged ions. 
 As we saw earlier, all ions in solution are surrounded by a solvation shell of water molecules.  This 
solvation shell may or may not be disrupted when ion pair formation occurs (Fig. 4.28).  If it is not dis-
rupted, and the two solvation shells remain intact, an outer sphere ion pair (also called an outer sphere 
complex) is said to have formed.  If water molecules are excluded from the space between the ions, an 
inner sphere ion pair (or complex) is said to have formed. 
 For some purposes, ion pairs can be treated as distinct species having charge equal to the algebraic 
sum of the charge of the ions involved.  These can be included, for example, in calculation of ionic 
strength to obtain a somewhat more accurate estimate of activities.  On the other hand, ion pairs, in-
cluding neutral ones, can be highly dipolar and may behave as charge-separated ions. 
 Ion associations affect activities in two ways.  First, associated ions are less likely to participate in re-
actions, thus reducing the activity of the ions involved.  Second, ion association reduces the ionic 
strength of the solution, and hence reduces the extent of electrostatic interactions among ions.  This has 
the effect of increasing activity.  To understand the first effect, consider the case where a certain fraction 
of the free ions re-associates to form ion pairs, e.g.: 
   ν

+Az+ + ν−Bz−®(A
ν+ Bv− )aq

0  

 
Figure 4.27.  Comparison of the electrostatic con-
tribution to the mean ion activity coefficient of 
NaCl (calculated by the Debye-Hückel Extended 
Law), the solvation contribution (calculated 
from equation 4.92 assuming h = 4) and the sum 
of the two. 
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where the superscript 0 indicates neutrality and the subscript aq a dissolved aqueous species. A salt that 
only partially dissociates in solution is called a weak electrolyte.  Let α be the fraction of the ions that 
associate to form ion pairs or complexes. The associate of this fraction of ions as ion pairs will be ther-
modynamically equivalent to that fraction of the substance not dissociating to begin with.  The fraction 
of free ions is then 1 – α.  Equation 4.78 becomes: 
  m+ = (1 – α)ν+m     and    m– = (1 – α)ν–m 4.94 
where m is the molality of the solute.  We can rewrite equation 4.76 as: 

  a± = (γ +m+ )
ν+

(γ −m− )
ν−⎡⎣ ⎤⎦

1/ν
 4.95 

Substituting 4.94 into 4.95 and rearranging, we obtain: 

  a± = γ +
ν+

γ −
ν−( )1/ν 1−α( )ν +m⎡⎣ ⎤⎦

ν+

1−α( )ν−m⎡⎣ ⎤⎦
ν−{ }1/ν  

A little more rearranging and we have:  

 a± = γ +
ν+

γ −
ν−( )1/ν 1−α( )m⎡⎣ ⎤⎦

(ν+ +ν− ) ν +( )ν
+

ν−( )ν
−{ }1/ν  

Finally, since ν = ν+ + ν–, we obtain: 

  a± = γ +
ν+

γ −
ν−( )1/ν 1−α( )m ν +( )ν

+

ν−( )ν
−{ }1/ν  4.96 

We can recognize the last term as m±.  Since a± = γ±m±, we see that the mean ionic activity coefficient will 
be  

  γ ± = 1−α( ) γ +
ν+

γ −
ν−( )1/ν  4.97 

for an incompletely dissociated electrolyte.  Thus the mean ion activity coefficients are reduced by a fac-
tor of 1 – α.  Provided we have appropriate stability constants for the ion pairs or complexes, α can be 
calculated and an appropriate correction applied. 
 Now consider a CaSO4 solution of which some fraction of the Ca2+ and SO 4

2 − ions, α, associate to 
form CaSO 4

o .  The ionic strength of the this solution would be 

 
Figure 4.28.  In formation of ion pairs, the solvation shells may remain intact or be partially or totally dis-
rupted.  The former results in an outer sphere ion pair, the latter results in an inner sphere ion pair. 
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  I = (1−α )
2

4m
Ca2+

+ 4m
SO4

2−( )  

Thus the ionic strength is reduced by a factor of 1 - α as well. 
 Ion pairs and complexes need not be neutral species (AlCl2+, for example).  When they are not, they 
will contribute to ionic strength.  A general expression for ionic strength taking account of ion associa-
tions must include charged ion pairs and complexes: 

  I = 1
2

(1−α )mizi
2

i
∑ + cnzn

2

n
∑⎡

⎣⎢
⎤
⎦⎥

 4.98 

where αi is the fraction of each ion involved in ion associations, and cn is the concentration of each ion 
pair or complex and zn is its charge.  We could use this result directly in the Debye-Hückel equation to 
make an improved estimate of ionic strength, and hence of the single ion activity coefficient. 
 Figure 4.29 illustrates the effect of ion pair formation for a hypothetical CaCl2 solution in which 
some fraction of the ions combine to form ion pairs. The fraction of Ca2+ ions forming CaCl– was as-
sumed to increase linearly with ionic strength up to the maximum value shown. 

Example  4.7.  Activity Coefficients  in a  Brine  
The following concentrations were measured in a shield brine from Sudbury, 
Canada at 22° C.  Calc ulate the activity coefficients of th ese species using the 
Truesdell-Jones equation. 
Answer: Our first task is to convert g/kg  to molal concentrations.  We do this by 
dividing by molecular weight.  Next, we need to calculate ionic strength (equation 
3.75) which we find to be 5.9 m.  Calculation of activity coefficients is then 
straightforward using the parameters in Tables 3.2 and 4.6.  Finally, we apply a 
correction for the decreased concentration of water (equation 4.89).  Our final 
spreadsheet is shown below. 

Species Conc 
g/kg 

Na 18.9 
K 0.43 
Ca 63.8 
Mg 0.078 
SO4 0.223 
HCO3 0.042 
Cl 162.7 

‰ m z å_TJ b_TJ log (gamma) ganma gamma corr
N a 18.9 0.822 1 5 0.165 0.728 5.341 4.741
K 0.43 0.017 1 3.5 0.015 -0.238 0.579 0.514
Ca 63.8 1.595 2 5 0.165 -0.017 0.963 0.855
Mg 0.078 0.003 2 5.5 0.2 0.264 1.836 1.630
SO4 0.223 0.002 2 5 -0.04 -1.229 0.059 0.052
HCO3 0.058 0.001 1 5.4 0 -0.233 0.585 0.519
Cl 162.7 4.590 1 3.5 0.015 -0.238 0.579 0.514

m 7.030 A 0.5092
I 5.913 B 0.3283   
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 If the formation of ion pairs depends on the 
ratio of thermal to electrostatic energy, we 
might expect that ion pair formation will de-
crease with temperature.  However, the relative 
permittivity of water decreases with tempera-
ture, allowing increased electrostatic interac-
tion between ions, and this effect dominates 
over the increased thermal energy of ions.  As a 
result, the extent of ion association increases 
with temperature.  Increasing pressure, on the 
other hand, favors dissociation of ions. 

4.7.2.2 Alternative Expressions for Ac-
tivity Coefficients 
 There have been a number of attempts 
to develop working equations that account 
for all the effects on activity coefficients at 
high ionic strength.  Many of these are ul-
timately based on the specific ion interac-
tion theory of Brønsted (1922).  Brønsted 
proposed an equation of the form: 

  logγ i = αm
1/2 + βim  4.99 

where α is a constant that is independent 
of the solute ions and β is the “specific ion 
interaction parameter” and is different for 
each ionic species.  Guggenheim (1935) re-
placed the first term on the right with a 
simplified form of the Debye-Hückel equa-
tion and the second term with the summa-
tion of ion-ion interaction parameters: 

 logγ i =
−zi

2A I
1+ I

+ 2 βi,kmk
k
∑  4.100 

where βικ is parameter describing the interactions between ions i and k.  For natural waters with many 
species, the Guggenheim equation becomes complex.  Also starting from Debye-Hückel, Truesdell and 
Jones (1974) proposed the following simpler equation: 

  

� 

logγ i =
− zi

2A I
1 + Båi I

+ biI logγ i =
−zi

2A I
1+ Båi I

+ bi I  4.101 

The first term on the right is identical in form to Debye-Hückel; the second term is similar to the Brøn-
sted specific ion interaction term.  Truesdell and Jones determined parameters å and b empirically.  Ta-
ble 4.5 lists these parameters for some common ions.  Figure 4.30 compares mean activity coefficient of 
calculated with the Debye-Hückel, Davies, and Truesdell-Jones equations with the actual measured 
values.  The Truesdell-Jones equations fit these observations very well.  This is not always the case, 
however.  The fit for Na2CO3, for example is little better than for Debye-Hückel. 
 Other equations include those developed by Pitzer (1979) and the National Bureau of Standards.  
While these equations are generally more accurate than the above, their complexity places them beyond 
the scope of this book.  The interested reader is referred to any of several texts on geochemical ther-

 
Figure 4.29.  Effects of ion association on the activity 
coefficient.  Mean ion activity coefficient of CaCl2 for 
varying extents of ion association.  Fraction of Ca2+ ions 
forming CaCl– was assumed to increase linearly with 
ionic strength up to a maximum value (αmax) at I = 5 m.  
Solid line shows electrostatic term (Debye-Hückel) after 
correction for ion association, dashed line shows the 
combined electrostatic and solvation term. 

Table 4.05.  Truesdell-Jones Parameters 
 Ion å b 
 Na+ 4.0 0.075 
 K+ 3.5 0.015 
 Mg2+ 5.5 0.20 
 Ca2+ 5.0 0.165 
 Cl– 3.5 0.015 
 SO 4

2 −  5.0 –0.04 
 CO3

2 −  5.4 0 
 HCO 3  5.4 0 

 
Figure 4.30.  Measured mean ionic activity coefficients in 
MgCl2 solution as a function of ionic strength compared 
with values calculated from the Debye-Hückel, Davies 
and Truesdell-Jones equations. 
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modynamics that treat them (Nordstrom and Munoz, 1986; Fletcher, 1993; Anderson and Crerar, 1993) 
as well as the original literature. 
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Problems 
1.  Kyanite, andalusite, and sillimanite (all polymorphs of Al2SiO5) are all in equilibrium at 500°C and 
376 MPa. Use this information and the adjacent table to construct an approximate temperature-pressure 
phase diagram for the system kyanite-sillimanite-andalusite.  Assume ∆V and ∆S are independent of 
temperature and pressure.  Label each field with the phase present. 
 
2.   Show that: Gexcess = (WG1

X2 +WG2
X1)X1X2

 
may be written as a 4 term power expansion, i.e.: 

  Gex = A + BX2 + CX2
2 + DX2

3  

3.  Construct G-bar–X diagrams for a regular solution with W= 12 kJ (W is the interaction parameter in 
a non-ideal solution) at 100° temperature intervals from 200 to 700° C.  Sketch the corresponding phase 
diagram. 
 
4.  Interaction parameters for the enstatite-diopside solid solution have been determined as follows: WH-

En = 34.0 kJ/mol, WH-Di = 24.74 kJ/mol (assume WV and WS are 0). 
 a.) Use the asymmetric solution model to calculate ∆Greal as a function of X2 (let diopside be compo-
nent 2) curves for this system at 100 K temperature from 1000 K to 1500 K.  Label your curves.  
 b.) What is the maximum mole fraction of diopside that can dissolve in enstatite in this temperature 
range:? 
 c.) Sketch the corresponding T-X phase diagram. 
 
5. Sketch G-bar–X diagrams for 1600° C, 1500° C, 1300° C, and 1250° C for the system Diopside-Anor-
thite (Figure 4.8).  Draw tangents connecting the equilibrium liquids and solids.  
 
6. Suppose you conduct a 1 atm melting experiment on a plagioclase crystal.  Predict the mole fractions 
of anorthite in the liquid and solid phases at a temperature of 1425° C.  Assume both the liquid and 
solid behave as ideal solutions.  Albite melts at 1118° C, anorthite at 1553°C.  ∆Hm for albite is 54.84 
kJ/mol; ∆Hm for anorthite is 123.1 kJ/mol. 
 
7.  Given the following 2 analyses of basaltic glass and coexisting olivine phenocrysts, determine  the KD 
for the MgO ® FeO exchange reaction, and calculate the temperatures at which the olivine crystallized 
using both MgO and FeO.  Assume Fe2O3 to be 10 mole% of total iron (the analysis below includes only 

  V–   S 
 φ (cm3) (J/K-mol) 
kyanite 44.09 242.30 
andalusite 51.53 251.37 
sillimanite 49.90 253.05 
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the total iron, calculated as FeO; you need to calculate from this the amount of FeO by subtracting an 
appropriate amount to be assigned as Fe2O3).  Note that the mole % Fo in olivine is equivalent to the 
mole % Mg or MgO.  (HINT: you will need to calculate the mole fraction of MgO and FeO in the liquid). 
 
Glass (liquid) composition: 

Sample TR3D-1 DS-D8A 
  (wt % oxide) (wt % oxide) 

SiO2 50.32 49.83 
Al3O2 14.05 14.09 
ΣFe as FeO 11.49 11.42 
MgO 7.27 7.74 
CaO 11.49 10.96 
Na2O 2.3 2.38 
K2O 0.10 0.13 
MnO 0.17 0.20 
TiO2 1.46 1.55 
  olivine 
Mole % Fo (=mole % Mg) 79 81 

 
8. Determine the temperature and oxygen fugacity of equilibration for the following set of coexisting 
iron-titanium oxides in lavas from the Azores: 

 titanomagnetite s.s. phase ilmenite s.s. phase 
 mole percent magnetite mole percent hematite 

G-4 groundmass 29.0 10.3 
SJ-8 phenocrysts 41.9 13.0 
SM-28 microphenocrysts 54.5 7.0 
T-8 groundmass 33.7 8.1 
F-29 microphenocrysts 36.2 6.0 

 Make a plot of ƒO2 vs. temperature using your results and compare with Fig. 3.21.  What buffer do 
the data fall near? 
 
9.  Starting from equations 4.54, 4.56 and 4.18, use the fundamental relationships between free energy, 
entropy, enthalpy, and the equilibrium constant to derive the 
temperature dependence of the titanomagnetite–ilmenite exchange 
(equation 4.57). 

 
10. Average Mid-Ocean Ridge Basalt (MORB) has the composition 
in the table to the right.  Use the “web applet” version of MELTS 
(http://melts.ofm-research.org/index.html) to answer the 
following question.    

a) At a pressure of 500 bars and ƒO2 of QFM -1, what is the 
liquidus temperature of this magma? 
b)  If this magma cools and undergoes fractional crystallization 
of solid phases to a temperature of 1100˚C, what would be the 
composition of the remaining magma?  What fraction of liquid 
would remain? 

Oxide Weight Percent 
SiO2 50.37 
TiO2 1.44 
Al2O3 15.38 
Fe2O3 1.10 
FeO 8.94 
MnO 1.10 
MgO 7.92 
CaO 11.51 
Na2O 2.70 
K2O 0.18 
P2O5 0.15 
H2O 0.15 
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c) If instead the oxygen fugacity were QFM +1, what would be the composition of the remaining 
magma at 1100˚C?  How much liquid would remain? 

 
11. In a melt having a composition, in wt %, of:  
 SiO2 58.12% TiO2 0.92% 
 Al2O3 16.47% Fe2O3 1.82%  
 MgO 5.62%  FeO 9.94%  CaO 7.11% 
Use the Ghiorso regular solution model and the interaction parameters in Ta-
ble 4.3 to: 

a.) calculate the G–  ex and ∆G–  mixing for this composition at 1300°C. 
b.) calculate the activity of Si4O8 at this temperature. 
 

12.  An analysis of an oil field brine from Mississippi with a temperature of 
150° C is shown to the right.  Calculate the activities of these species at that 
temperature using the Truesdell-Jones equation. 
 
13. Show that for a strong electrolyte, i.e., one in which dissociation is com-
plete and: 
   m– = ν–m    and    m+ = ν+m 
where m is the molality of the solute component Aν+Bν-, that: 

  m± = m(ν+
ν+ν−

ν− )1/ν  
where ν = ν+ + ν–. 
14.  Mean ionic activity coefficients were measured for the following solutions 
at an ionic strength of 3: γKCl = 0.569, γNaCl = 0.734, γNa2CO3 = 0.229.  Assuming γCl– 
= γK– = γ±KCl, what is the activity coefficient of CO 3

2 −? 
 
15. Calculate the electrostatic and solvation contributions to the mean ionic ac-
tivity coefficient of MgCl2 at concentrations of 0.0033, 0.01, 0.033, 0.05, 0.1, 0.33, 
0.5, and 1 using the Debye-Hückel equation and Robinson and Stokes (equ. 
4.92) equ. respectively. Plot results, as well as γelect+solv = γelect*γsolv as a func-
tion of ionic strength.  
 
16.  Calculate the mean ionic activity coefficient for NaCO3 using the Debye-
Hückel and Truesdell-Jones equations and compare your results with the ob-
served values to the right.  Overall, which fits the data better?  

Problem 12 

Species Conc 
  g/kg 
Na+ 63.00 
K+ 6.15 
Mg2+ 2.77 
Ca2+ 44.6 
Cl– 200.4 
SO2-

4   0.13 
HCO–

3  0.03 

 
I, m 

γ± 
observed 

0.001  
0.003 0.887 
0.006 0.847 
0.01  
0.015 0.78 
0.03 0.716 
0.06 0.644 
0.1  
0.15 0.541 
0.3 0.462 
0.6 0.385 
1  
1.5 0.292 
3 0.229 
6 0.182 


